FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT REACH STREET LANDS VENETIAN GROUP LTD. TOWNSHIP OF UXBRIDGE

Prepared for:	Venetian Group Ltd. 110 Konrad Crescent, Unit 6 Markham, Ontario L3R 9X2
Prepared by:	Sabourin Kimble & Associates Ltd. 110 Old Kingston Road Ajax, Ontario L1T 2Z9

Project No.: 17:386:P1

Date: April, 2018 Revised March, 2019

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT REACH STREET LANDS VENETIAN GROUP LTD. TOWNSHIP OF UXBRIDGE

TABLE OF CONTENTS

1.	INT	RODUCTION1
2.	DE	VELOPMENT CONCEPT3
3.	MU	INICIPAL SERVICES
3	3.1	Site Grading5
	3.1.	.1 Existing Conditions
	3.1.	.2 Proposed Grading
3	3.2	Storm Drainage7
	3.2.	.1 Existing Conditions
	3.2.	.2 Proposed Storm Servicing
3	3.3	Sanitary Drainage
3	3.4	Water Supply9
4.	STO	ORMWATER MANAGEMENT10
4	4.1	Stormwater Management Criteria10
4	4.2	Stormwater Management Concept11
4	4.3	Supporting Study
4	4.4	Stormwater Quality/LID Controls
4	4.5	Stormwater Quantity Controls14
4	4.6	Water Balance and Phosphorus Assessment15
5.	ER	OSION AND SEDIMENTATION CONTROL MEASURES17
6.	CO	NCLUSIONS

Appendix A – Storm Sewer Design

Appendix B – Sanitary Sewer Design

Appendix C- LID Design

Appendix D – Water Quantity Control Design

Appendix E – Cross Sections

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT REACH STREET LANDS VENETIAN GROUP LTD. TOWNSHIP OF UXBRIDGE

LIST OF FIGURES

Figure 1	Study Area	2
Figure 2	Development Concept	4
Figure 3	Existing Topography	6
Figure 4	Proposed Grading	Back Pocket
Figure 5	Proposed Servicing	Back Pocket
Figure 6	Proposed LID Works	Back Pocket

LIST OF TABLES

Table 1	Overall Stormwater Management Criteria	10
Table 2	Water Quality/Infiltration Volumes	14
Table 3	Water Quantity Storage Volumes	15

1. INTRODUCTION

Sabourin Kimble & Associates Ltd. have been retained by Venetian Group Ltd. to carry out a Functional Servicing Report (FSR) in support of the redevelopment of the lands at 231 to 249 Reach Street in the Township of Uxbridge. The subject site is located on the north side of Reach Street just east of Coral Creek Crescent/Testa Road, as shown in Figure 1.0.

The purpose of this FSR is to provide municipal servicing and stormwater management information to address site grading, storm drainage, sanitary drainage, water supply and stormwater management for the proposed development.

In support of the Lake Simcoe Conservation Authority stormwater management guidelines, this FSR also represents a Stage 1 report which outlines the functional design for stormwater management, water balance, erosion control and Low Impact Design (LIID) design concepts.

2. DEVELOPMENT CONCEPT

As shown in Figure 2, the proposed development contemplates the redevelopment of six (6) existing single family residential units (231, 235, 237, 241, 245 and 249 Reach Street) into a 62 unit townhouse development. The proposed townhouse units will be a bungalow style with the garage at grade and various types of amenity areas. The units in blocks 1 through 9 will front onto the interior road with the garage facing the road. Blocks 10 through 11 will front onto Reach Street with the garage in the rear fronting onto an interior road.

There are two (2) woodlot areas that will be protected and preserved as identified through an Environmental Impact Study prepared by Beacon Environmental Limited.

CAD FILE: P:N17\386\Drawing Files\Phase I\Figures\386 Fig 2 - Development Concept

3. MUNICIPAL SERVICES

3.1 Site Grading

3.1.1 Existing Conditions

As shown in Figure 3, the entire subject site has a grade separation of approximately nine (9) metres from the southeast to northwest limits of the site. The existing residential lots are all lower than the centre-line grades of Reach Street. Surface runoff from Reach Street is separated from the drainage on the lots by an existing ditch flowing in a westerly direction along the north boulevard. Small portions of the boulevard flow into the lots and overland toward the northwest. Ultimately, overland drainage is conveyed to the rear lot lines of the subdivision to the north and is taken into the storm drainage system of the residential lots fronting onto Village Green Lane.

3.1.2 Proposed Grading

As shown in Figure 4 (back pocket) specific grading is required to support the development concept. As required by the Region of Durham, property line grades along Reach Street have been established as 0.3 metres above the existing centre-line of road grade for Reach Street to allow for future urbanization. This requirement, along with the requirement to match perimeter grades influences the grading of the internal street and lots. In keeping with the existing overland drainage direction, the interior roads have been graded to collect at a low point adjacent to the proposed woodlot at the northwest limit of the site. The capacity of the downstream storm drainage system has specific flow targets for this site and as such, it is proposed to capture all overland flows within the site and convey them to the outlet via the storm sewer system. Prior to discharge to the downstream receiving storm sewer, the flows will be controlled on-site to the required targets. Further details are provided in the following sections of this report. Based on the development concept and the proposed road grades, finished floor elevations have been established resulting in a varying number of risers throughout the proposed development. The Architect for the subject site (Hunt Design Associates Inc.) will ultimately adjust the number of risers and unit mix to reflect the ultimate grading of the site.

Functional Servicing Report Venetian Group Ltd.

The interior road and units have been graded to contain the majority of the drainage within the site. The coverage on the site is quite extensive and as a result, a number of retaining walls are required to match existing grades at the western woodlot and the internal visitor parking stalls. Anticipated top of wall and bottom of wall elevations have been shown on the grading plan. The height of each retaining wall has been minimized through the use of supporting 3:1 slopes to match existing ground.

3.2 Storm Drainage

3.2.1 Existing Conditions

As outlined in Section 3.1.1, the entire site contributes overland drainage to the existing storm sewer system on Village Green Lane via a rear yard catchbasin located at the northwest limit of the site. In addition to the 3.62 hectares of drainage area from the subject site, an external area of 1.44 hectares to the east of the site also contributes overland drainage to the outlet. These areas are in excess of the area allowed for in the storm sewer design for the Estates of Avonlea. The area allowed for the downstream storm sewer design is outlined in the following paragraph. Refer to the storm drainage plan provided in Appendix A for the limits of the existing external drainage area.

The storm sewer design for the Estates of Avonlea subdivision to the north, made allowance for external uncontrolled flow (reaching the northwest limit of the subject site) of approximately 0.38 hectares at a runoff coefficient of 0.35. This flow was anticipated to discharge via a rear yard catchbasin from Lot 30 to the Village Green Lane storm sewer. Refer to the Burnside storm drainage plan in Appendix A (total drainage area 0.58 ha at 0.35). That development has also sized the municipal storm sewers and communal Stormwater Management Pond to accommodate the site using a runoff coefficient of 0.45 and an overall area of 1.65 ha. A servicing block at the northeast corner of the subject site connects to Village Green Lane. The allowable storm discharge from the site was identified as 221 I/s and 414 I/s for the 5 year and 100 year storms respectively as shown on the Avonlea Estates storm drainage plan (Appendix A). Therefore, adequate stormwater management controls must be implemented on the subject site

to meet the downstream capacity constraints. The details of those controls are outlined in the following sections.

3.2.2 Proposed Storm Servicing

As shown in Figure 5 (back pocket) the entire site will be serviced by a storm sewer system which outlets to the existing 525mm diameter storm sewer on Nelkydd Lane. The internal storm sewers have been sized to convey the 5 year and 100 year storm flows to the outlet of the site. A runoff coefficient of 0.75 for the multi-family residential portion of the site and 0.25 for the remaining open space plus the external drainage area was applied as per the Township of Uxbridge design criteria. The site storm drainage will be controlled to a maximum flow of 221 l/s for the 5 year storm and 414 l/s for the 100 year storm as per the requirements of the downstream storm drainage system. Details of the stormwater management controls are provided in Section 4.0 of this report.

Overland drainage from the rear yards adjacent to the existing subdivision and the existing woodlot at the northwest corner will outlet to the existing rear yard catchbasin within the downstream subdivision. The combined coverage and drainage area is equal to that anticipated in the Village Green Lane design as outlined in the supporting design calculations (Appendix D).

A preliminary storm sewer design sheet and storm drainage plan have also been provided in Appendix A.

3.3 Sanitary Drainage

As shown in Figure 5, the entire site will be serviced internally by 200mm diameter sanitary sewers which will flow by gravity and outlet to the existing 200mm diameter sanitary sewer on Nelkydd Lane. The resulting peak sanitary flow is 3.00 l/s with a contributing population of 184 persons. The downstream sanitary sewer provided a capacity allowance of 1.65 l/s with a population of 77 persons. Review of the existing downstream system identified a maximum residual capacity of 2.35 l/s at existing manhole 17-17. The residual capacity within the system will accommodate the

additional flow generated from the proposed development. A preliminary sanitary sewer design sheet and assessment of downstream residual capacity is provided in Appendix B.

3.4 Water Supply

As shown in Figure 5, the subject site will be serviced with a private domestic watermain and a private fire main from the existing Region of Durham watermain located on Village Green Lane. These private watermains will be distributed through a proposed mechanical room designed to Region of Durham standards which will house a domestic water meter and a double check valve assembly on the fire main. The fire main will extend through the site to strategic hydrant locations to provide adequate fire protection for the site. Individual domestic connections will be provided to each unit.

4. STORMWATER MANAGEMENT

4.1 Stormwater Management Criteria

The stormwater management approach for the site must meet the overall stormwater management criteria as established in the LSRCA Technical Guidelines for Stormwater Management Submissions (2016) and the requirements of the Township of Uxbridge as summarized in Table 1.

<u>TABLE 1</u> Overall Stormwater Management Criteria								
Control	Criteria							
Water Quality	 Enhanced fisheries protection as outlined in the MOE Stormwater Management Practices Planning and Design Manual. Minimize phosphorous loading according to the Lake Simcoe Protection Plan and offset any increases in phosphorous loading in keeping with the Lake Simcoe Phosphorous Offsetting Program (2017). 							
Erosion Control	 As outlined in the Uxbridge Brook Watershed Plan (February 1997) the extended detention of the 40mm storm runoff for a minimum of 24 hours. 							
Water Quantity	 Control post development flows to pre-development levels for the 2 through 100 year storms. As per the downstream subdivision design, control the site discharge to the downstream storm sewer to 221 l/sec for the 5 year design storm and 441 l/sec for the 100 year design storm. Maintain or reduce the equivalent discharge to the rear yard catchbasin at existing lot 30 (downstream subdivision) to the area and coverage provided in the storm sewer design. Control stormwater runoff volumes such that, the post-construction runoff volume shall be retained on site from runoff of the first 25 mm of rainfall from all impervious surfaces on the site. Maintain safe conveyance of flows to sufficient outlets without negative impacts on adjacent properties. 							

Water Balance	Maintain the	pre-development	water	balance	under	post	development
	conditions.						

4.2 Stormwater Management Concept

The stormwater management approach has been developed to reflect the Stormwater Management Guidelines outlined in Table 1 and the infiltration capacity of the site. The on-site soils are predominately sand with high infiltration capabilities (refer to section 4.3). Therefore, it is proposed to infiltrate a volume equivalent to the 40mm storm runoff from all impervious surfaces. It is proposed that these works will adequately address the overall stormwater management criteria for water quality control, erosion control and the runoff volume control as outlined in Table 1. Additional water quantity storage will be provided to adequately address the limited capacity of the downstream receiving system. The entire system has also been reviewed by Palmer Environmental as it relates to site water balance and phosphorous loading (a summary of that assessment is provided in section 4.6).

Infiltration galleries combined with perforated storm sewers plus rear yard infiltration swales will provide sufficient infiltration capacity as shown in Figure 6 (back pocket). Specific and distinct infiltration systems will be provided throughout the site. When the infiltration capacity is reached, rear yard LID areas 1, 2, 4 and 5 will overflow into the perforated storm sewer system for additional controls. Rear yard LID area 3 will outlet to the existing woodlot when the infiltration capacity is reached. The internal perforated pipe system plus the centralized facility are completely linked and dendritic in nature to provide adequate infiltration capacity for the remainder of the site. The infiltration capabilities of the granular cisterns will be supplemented by extra depth topsoil (0.3 m minimum) on all lawn and landscaped areas. Roadway catchbasins have been strategically located to maximize contributions from rooftops and rear yard/landscape areas. All road drainage will be pre-treated through an oil/grit separator prior to discharge to any infiltration facilities.

Flows in excess of the 40mm runoff event up to the 100 year storm event will be controlled for water quantity purposes by orifice plates located in the downstream most manhole. The water

quantity storage volume will be provided in a portion of the contributing storm sewer system plus a centralized open bottom underground stacked storage system (Stormchamber) located at the site outlet.

Allowable release rates, post development flows and runoff volumes have been evaluated at the site outlet. The technical details of the proposed stormwater management system are provided in the following sections.

4.3 Supporting Study

In March, 2019, Palmer Environmental Consulting Group Inc. completed a detailed hydrogeologic investigation on the site which included six (6) boreholes with three (3) monitoring wells. Boreholes were drilled to depths of up to 8.0 metres. Through the monitoring period the boreholes and monitoring wells remained dry. As a result, the monitoring was expanded to include five (5) existing private wells located within the site boundary. Monitoring of these wells concluded that the ground water levels were between 10 and 15 metres below existing ground elevations. The monitoring is on-going and will be updated as the development process proceeds. These ground water elevations were monitored over the course of one (1) year and were considered to be stable with very little fluctuation. The report identified that seasonal variations of 0.2-0.4 metres may be expected.

A representative percolation rate was determined empirically based on the geometric mean of hydraulic conductivity valuations for two (2) locations within the site. The empirical calculation was supported by field testing utilizing the Guelph Permeameter in five (5) different test locations. The resulting representative infiltration rate was determined to be 72 mm/hr and was subject to a safety factor of 2.5. Therefore, a percolation rate of 28.8 mm/hr was utilized in the preliminary design of the LID system. As the design process advances and elevation/location details for each LID are verified, additional in-situ field percolation rate tests will be conducted and the design adjusted accordingly.

A detailed summary of the hydrogeologic investigation and findings is provided in the Palmer report provided under separate cover.

4.4 Stormwater Quality/LID Controls

Water quality and infiltration facilities have been distributed throughout the site as shown in Figure 6. Runoff from 75% of the roof area within rear yard LID areas 1 through 5 will be directed to the surface at the rear of each housing unit. This runoff will combine with overland flow from the rear yards and discharge to swales located along rear property line. The flow from the swales will be captured by rear yard catchbasins and discharged into a granular trench located beneath the swale. The granular trenches have been designed with sufficient storage volume to accommodate the equivalent of 40mm of runoff from the contributing roof areas. Sufficient contact area has been provided to accommodate draindown of the storage volume within a 24 hour period. An overflow outlet will be provided on each granular gallery should they become full. Rear yard LID areas 1, 2, 4, and 5 will overflow into the storm sewer system within the road for further water quantity control. Rear yard LID area 3 will overflow into the woodlot located at the northwest limit of the site. A detail of the rear yard LID system is provided in Figure 6.

The remainder of the site will contribute runoff to an internal perforated storm sewer and centralized storage facility with sufficient granular storage capacity to accommodate 40mm of runoff from the remaining roof areas and all of the surface impervious areas (roadways and driveways). Granular galleries will be provided at the bottom of the perforated sewers and under the centralized storage area. The galleries are proposed in a dendritic fashion following the storm sewer routing such that continuous storage volume is always available. It is proposed that the remaining front roof areas (25%) of the units adjacent to rear yard LID's plus 100% of the remaining roof areas be directly connected to the perforated storm sewer system. Road drainage will be captured via catchbasins in a conventional manner with pre-treatment of the flows with strategically located oil/grit separators. The granular galleries under the roadway have been designed with sufficient contact area to ensure a draindown time of 24 hours. The centralized open bottom facility has been designed in two (2) locations. The draindown time of

the granular under the main centralized open bottom facility is 48 hours. A detail of the perforated storm sewer granular galleries is provided in Figure 6.

The contributing drainage areas and corresponding storage volumes are summarized in Table 2.

TABLE 2 WATER QUALITY/INFILTRATION VOLUMES										
Drainage Area	Total Contributing Drainage Area (ha)	Total Impervious Area (ha)	Required Storage Volume (m ³)	Storage Volume Provided (m ³)						
*Rear Yard LID 1	0.12	0.09	36.0	34.8						
**Rear Yard LID 2	0.30	0.23	90.0	95.1						
Rear Yard LID 3	0.08	0.07	33.0	24.3						
Rear Yard LID 4	0.06	0.04	17.0	14.4						
Rear Yard LID 5	0.09	0.06	25.4	17.1						
Perforated Storm Sewers &Central Facility	2.02	1.58	634.6	657.3						

* External area contributing to the LID but not included in the calculation is 1.0 ha from outside of subject property.

**External area contributing to the LID but not included in the calculation is 0.83 ha of woodlot from within subject site and 0.44 ha from outside of the subject site.

Calculations in support of the water quality/infiltration design are enclosed in Appendix C.

4.5 Stormwater Quantity Controls

It is assumed that the water quality/infiltration works provided will adequately address all water quality, erosion and runoff volume control requirements for the site. Any flow in excess of these systems will be conveyed by the storm sewers to water quantity control orifice plates located in manhole 16. All major system flows will be captured into the storm sewer system on-site and will also be conveyed to manhole 16. A 287mm and 318mm diameter orifice plate combination will control the discharge from the developed area such that post development flows meet the 5 year storm flow target of 221 I/s and the 100 year storm flow target of 414 I/s. The orifice plate controls result in a maximum 100 year storm storage volume of 616 cubic metres at a maximum ponding

elevation of 279.07 metres. The storage volume will be provided within oversized storm sewers within the development and in a Stormchamber open bottom stacked storage system located at the north limit of the site. The resultant storage volume and ponding elevations for each return period storm are summarized in Table 3.

TABLE 3 WATER QUANTITY STORAGE VOLUMES										
Storm	Maximum Water Surface Elevation (m)	Storage Volume in Storm Sewer System (m ³)	Storage Volume in Stormchamber System (m ³)	Total Storage Volume (m ³)						
5 year	278.55	81	269	350						
100 year	279.07	179	440	619						

Calculations in support of the water quantity control system are enclosed in Appendix D.

4.6 Water Balance and Phosphorus Assessment

Palmer Environmental Consulting Group completed a detailed assessment of water budget and phosphorus generation for the site under existing and proposed conditions. Each assessment evaluated the effectiveness of the proposed LID's in maintaining water balance for the site and reducing phosphorus generation.

The pre-development and post development water budget was completed for the overall study area using a monthly soil-moisture balance approach (Thornthwaite and Mather, 1957). The water balance calculations estimate average annual evapotranspiration (evaporation and plant transpiration) using factors such as monthly precipitation, temperature and latitude. The average available water surplus, which is the water available for infiltration and runoff purposes, was

calculated by subtracting the average annual evapotranspiration from the average annual precipitation. Based on soil conditions at the site, a soil moisture retention value of 150 mm was utilized to represent the soil type and vegetation cover. The resulting annual water surplus was then partitioned using infiltration coefficients based on MOEE (1995) and modified based on site specific conditions. This approach takes into consideration three factors: topography/slope, soil type, and land cover, which are summed to provide a representative infiltration factor for the area.

The pre-development water budget resulted in total runoff of 3,087 m³/yr and total infiltration of 10,451m³/yr. Under post development conditions, the provision of the proposed LID works results in total runoff of 2,159 m³/yr and total infiltration of 20,148 m³/yr. The provision of the distributed LID works throughout the site result in a net decrease in site runoff of approximately 30% and a net increase in infiltration of approximately 98%.

The Lake Simcoe Phosphorus Offsetting Program (LSPOP) requires that all new developments must control 100% of the phosphorus from leaving their property. Based on the Lake Simcoe Region Conservation Authority (LSRCA) Phosphorus Offsetting Policy and the MECP Phosphorus Budget Tool (V2.0 Release Update – March 30, 2012) PECG estimated the pre- and post-development phosphorous budget for the site.

Based on the existing cover for the site, the pre-development phosphorus load was calculated to be 0.36 kg/yr. Palmer evaluated the effectiveness of the proposed distributed infiltration works for the site including an eight (8) month construction period and determined that the total post development phosphorus loading would be 0.24 kg/yr. This represents a 33% reduction in phosphorus loading under post development conditions.

The detailed calculations and finding are contained with the Hydrogeological Assessment which has been provided under separate cover.

5. EROSION AND SEDIMENTATION CONTROL MEASURES

During construction of any portion of the subject lands adequate erosion and sedimentation controls must be implemented to safeguard them against potential impacts. In support of the detailed design for any development proposal, a comprehensive construction erosion and sedimentation control plan shall be prepared. This plan should detail the works proposed to control erosion on-site and sediment transport from the site to match or exceed current Municipal and Provincial standards. Works such as sediment control fencing, controlled stripping/earthworks practices, undisturbed buffers, filter strips, catchbasin silt sacks and catchbasin/storm sewer sediment traps should be implemented. Specific sedimentation control measures must be designed to safeguard the infiltration facilities from plugging with construction sediment. In support of the erosion and sedimentation control, a construction implementation plan and maintenance protocol should also be established.

The design of the sediment control plan, construction implementation plan and maintenance protocol should be completed in accordance with the Township of Uxbridge guidelines, the Greater Golden Horseshoe Conservation Authorities Erosion and Sediment Control Guideline for Urban Construction and the requirements of the LSRCA.

Sedimentation control practices will be implemented for all construction activities within the Study Area, including tree removal, topsoil stripping, underground sewer construction, road construction and house construction. Sedimentation control measures are to be installed and operational prior to any construction activity, and are to remain in place until such time as the residential dwellings are constructed and the lot grading complete with established sod.

6. CONCLUSIONS

Based on the findings of this Functional Servicing Report, the following conclusions were reached:

- The subject lands should be developed as townhouse residential land use.
- The style of development requires specific grading that may be accommodated on this site.
- There is sufficient capacity in the downstream sanitary sewers and water supply to adequately service the proposed development.
- The proposed infiltration works and the existing soil characteristics provide sufficient capacity to retain and infiltrate the runoff volume from a 40mm design storm over the contributing impervious area.
- The water quantity storage system provided will control post development flows to specific flow targets at the site outlet.
- The proposed LID program will be effective in maintaining the post development to predevelopment water balance and will result in a lower phosphorus

APPENDIX A Storm Sewer Design

	STORM SEWER DESIGN SHEET 5 YEAR, 25 YEAR, AND 100 YEAR STORMS TOWNSHIP OF UXBRIDGE																												
STREET	Upstream MH	n Downstre MH	am A at R=0.25 (ha) at <i>"Parks"</i> "S	A t R=0.45 (ha) 'Single-Fam''	A at R=0.75 (ha) "Townhouses"	A at R=0.85 (ha) <i>"Paved Areas"</i>	A x R this section (ha)	Acc. AR (ha)	t (min)	l (5yr) (mm/hr)	Q (5yr) (l/s)	l (25yr) (mm/hr)	Q (25yr) (l/s)	l (100yr) (mm/hr)	Q (100yr) (l/s)	Captured Overland Flow (l/s)	Acc. Captured Overland	Q (Design) (l/s)	Pipe	Pipe (mm)	Grade (%)	Capacity (I/s)	Velocity (m/s)	Length (m)	Time (min)	Total Time (min)	Downstream Invert	Upstream Invert	% Capacity
			1 1			T	1		T	1			T		T	I	T	T		T	T	T	1						T
Street A	1	2			0.1	1 0.0	7 0.135	0.135	10.00	107.01	39.98	154.64	4 57.77	200.63	3 74.96	34.98	34.98	3 74.96	6 METRIC	300	2.00	136.76	1.93	30.1	0.26	10.26		0.60	29.2%
Street A Street A	2	3	1		0.12	2 4 0.2	0.340	0.475	10.26	105.57	139.15 265.26	152.42	2 200.90 382.87	197.86	6 260.80 497.10		34.98	3 174.13 3 300.24	3 METRIC 4 METRIC	375	2.00	247.95 350.66	2.25	10.0	0.07	10.33 10.89		0.20	56.1%
Street A	5	6			0.20)	0.150	0.150	10.00	107.01	44.59	154.64	4 64.43	200.63	8 83.60	39.01	39.01	1 83.60	0 METRIC	300	0.40	61.16	0.87	56.0	1.08	11.08		0.22	72.9%
Street C	6	8	0.25		0.16	6	0.183	1.241	10.89	102.25	352.36	147.32	2 507.63	191.48	659.81		73.99	426.35	5 IMPERIAL	900	0.30	1034.42	1.58	35.0	0.37	11.26		0.11	34.1%
Street C	8	14	1.02		0.30	0.0	3 0.548	1.789	11.26	100.42	498.87	144.49	717.86	187.94	933.70		73.99	572.86	6 IMPERIAL	900	0.30	1034.42	1.58	55.0	0.58	11.84		0.17	48.2%
Street B	10	11			0.25	5	0.188	0.188	10.00	107.01	55.73	154.64	4 80.54	200.63	104.50	48.76	6 48.76	6 104.50) IMPERIAL	450	0.40	188.11	1.15	88.0	1.28	11.28		0.35	29.6%
Street B	11	13			0.27	0.1	2 0.305	0.492	11.28	100.32	137.10	144.35	5 197.28	187.75	256.60		48.76	6 185.87	7 IMPERIAL	675	0.30	480.32	1.30	74.0	0.95	12.23		0.22	28.5%
Street B	13	14			0.17	0.1	0.213	0.705	12.23	95.94	187.75	137.67	7 269.41	179.34	350.96	114.44	163.20	350.96	6 IMPERIAL	1050	0.20	1274.02	1.43	73.0	0.85	13.08		0.15	14.7%
Street C	14	15					0.000	2.493	11.84	97.67	676.38	140.30	971.59	182.66	1264.94	351.37	588.57	7 1264.94	4 IMPERIAL	750	1.00	1161.42	2.55	10.0	0.07	11.91		0.10	58.2%
Easment	15	26					0.000	2,493	11.91	97.37	674.31	139.85	5 968.44	182.09	1260.97		588.57	1262.88	B IMPERIAL	525	0.30	245.74	1.10	55.0	0.83	12.74		0.17	
	-	-					-																					 	
PROJECT :			Reach Street				Town IDF C	Curve:	NO	TES Regional IDF	Curve:																		
PROJECT NUMBE	R :		17:386				I _{5YR} =	9 (t + 5	04 5) ^{0.7880}	I _{10YR} =	3454 (t+20)											SAE	BOUI	RIN	KIM	IBL	Ŧ		
CLIENT : Venetian Group				l _{25YR} =	12 (t+	234 4) ^{0.787}	I _{25YR} =	3454 (t + 20)	x 1.1										& A	SSO	CIA	TES	LTD).					
DATE :			March 2019				I _{100YR} =	17 (t+	799 5) ^{0.810}	I _{100YR} =	3454 (t + 20)	x 1.25	Designed: Checked:	KLD AK								CONS	ULTING	ENGIN	EERS				

TOWNSHIP OF UXBRIDGE

CALCULATE

CHECKE

PROJECT

STORM SEWER DESIGN SHEET - MINOR SYSTEM
CORAL CREEK HOMES - PHASE 4

	UP STREAM		DOWN STREAM		SECTION			CUMULATIVE	INTENSITY	FLOW	PIPE					CONC.	TOTAL
STREET					AREA	COEFF.	AxR	AxR	15	Q5	LENGTH	SIZE	GRADE	CAP.	VEL.	TIME	TIME
	MH	INVERT	МН	INVERT	(ha)				(mm/s)	(l/s)	(m)	(mm)	(%)	(l/s)	(m/s)	(min.)	(min.)
								1.8.1									10.00
Nelkydd Lane	FUT	279.19	26	277.320	1.65	0.45	0.743	0.743	107.01	221	196.7	525	0.40	284	1.27	2.58	12.58
Nelkydd Lane	26	277.290	25	276.430	0.51	0.45	0.230	0.972	94.42	255	57.3	525	1.50	549	2.46	0.39	12.97
Nelkydd Lane	- 25	276.400	24	275.710	0.40	0.45	0.180	1.152	92.81	297	57.3	525	1.20	491	2.20	0.43	13.40
																	10.00
	RLCB4	276.120	24	275.850	0.15	0.45	0.068	0.068	107.01	20	54.4	300	0.50	71	0.98	0.93	10.93
Nelkydd Lane	24	275.620	23	274.854	0.55	0.45	0.248	1.467	91.08	371	85.6	525	0.90	426	1.90	0.75	13.40
																	10.00
Village Green Lane	26	277.920	39	275.350	0.58	0.45	0.261	0.261	107.01	78	85.6	300	3.00	175	2.39	0.60	10.60
Hayfield Avenue	39	275.250	38	274.950	0.32	0.45	0.144	0.405	103.77	117	50.3	450	0.60	230	1.40	0.60	11.19
Hayfield Avenue	38	274.920	23	274.712	0.45	0.45	0.203	0.608	100.74	170	68.7	600	0.30	351	1.20	0.95	12.15
													0				13.40
Nelkydd Lane	23	274.562	22	274.151	0.45	0.45	0.203	2.277	91.08	576	82.4	750	0.50	820	1.80	0.76	14.17
							-										10.00
					0.15	0.45	0.068	0.068							- 33	N	
	RLCB3		42		0.56	0.35	0.196	0.264	107.01	78	40.0	300	1.00	101	1.38	0.48	10.48
					0.12	0.45	0.054	0.054					ļ				
	RLCB2		42		0.42	0.35	0.147	0.201	107.01	60	40.0	300	1.00	101	1.38	0.48	10.48
Village Green Lane	42	275.385	43	274.790	0.31	0.45	0.140	0.604	104.37	175	90.1	450	0.66	242	1.47	1.02	11.50
																	10.00
					0.11	0.45	0.050	0.050									
	RLCB1		43		0.58	0.35	0.203	0.253	107.01	75	40.0	300	1.00	101	1.38	0.48	10.48
Village Green Lane	39	275.710	43	274.863	0.19	0.45	0.086	0.338	104.37	98	90.0	450	0.94	288	1.76	0.85	11.34
Millbury Road	43	274.595	37	274.448	0.52	0.45	0.234	1.176	100.05	327	63.9	750	0.23	557	1.22	0.87	12.37
Millbury Road	37	274.294	22	274.150	0.38	0.45	0.171	1.347	95.31	357	57.3	750	0.25	582	1.28	0.75	13.12
	<u> </u>																14.17
Nelkydd Lane	22	273.807	21	273.630	0.30	0.45	0.135	3.759	88.21	921	59.0	1050	0.30	1560	1.75	0.56	14.73
		- 2-															10.00
Foxbury Road	42	275.450	36	274.864	0.47	0.45	0.212	0.212	107.01	63	72.6	375	0.81	164	1.44	0.84	10.84
Foxbury Road	36	274.784	35	274.550	0.35	0.45	0.158	0.369	102.51	105	46.7	375	0.50	129	1.14	0.69	11.52
Foxbury Road	35	274.408	21	274.210	0.18	0.45	0.081	0.450	99.15	124	39.6	450	0.50	210	1.28	0.52	12.04

R = 0.45 (Single Family-Urban) / 0.75 (Townhouses & School)I5 = 904/(T+5)^0.788Rational FormulaQ=2.78AIR

Limit of flow velocity = 0.75m/s < V < 4.5m/s

*Allowable Peak Flow From 241 Reach Street

Printed on: 6/29/2009

H:\dwg\PBJOB\2002\Pb02-3956 \Design\11727 STM & SAN Phase 4 - Submission 3.xls

D BY:	F.W.	DATE:	JUNE 2009	
D BY:	E.G.	DATE:	JUNE 2009	
- NO.:	02-3956	SHEET	1 OF 3	

TOWNSHIP OF UXBRIDGE

STORM SEWER DESIGN SHEET - 100-YEAR CORAL CREEK HOMES - PHASE 4

CALCULA

CHECI

UP STREAM DOWN STREAM SECTION CUMULATIVE INTENSITY **FLOW** STREET AREA COEFF. AxR AxR LENGTH 1100 Q100 SIZE G MH INVERT MH INVERT (ha) (mm/s) (l/s) (m) (mm) Nelkydd Lane FUT 279.190 26 277.320 1.65 0.56 0.928 0.928 200.63 517 196.7 525 Nelkydd Lane 277.290 276.430 26 25 0.51 0.56 0.287 1.215 176.41 595 57.3 525 Nelkydd Lane ⁻ 25 276.400 24 275.710 0.56 0.40 0.225 1.440 173.32 693 57.3 525 **RLCB4** 276.120 24 275.850 0.15 0.56 0.084 0.084 200.63 47 54.4 300 Nelkydd Lane 24 275.620 23 274.854 0.55 0.56 0.309 1.834 170.00 866 85.6 525 /illage Green Lane 26 277.920 39 275.350 0.58 0.56 0.326 0.326 200.63 182 85.6 300 Hayfield Avenue 39 275.250 274.950 38 0.32 0.56 0.180 0.506 194.40 273 450 50.3 Hayfield Avenue 38 274.920 23 274.712 0.45 0.56 0.253 0.759 188.57 398 68.7 600 Nelkydd Lane 23 274.562 22 274.151 0.45 0.45 0.203 2.796 170.00 1320 82.4 750 0.15 0.45 0.068 0.068 RLCB3 42 0.56 0.35 0.196 0.264 200.63 147 40.0 300 0.12 0.45 0.054 0.054 RLCB2 42 0.42 0.35 0.147 0.201 112 200.63 40.0 300 Village Green Lane 42 275.385 43 274.790 0.31 0.45 0.140 0.604 195.55 328 90.1 450 0.11 0.56 0.062 0.062 RLCB1 43 0.58 0.44 0.254 0.316 200.63 176 40.0 300 Village Green Lane 39 275.710 43 274.863 0.19 0.56 0.107 0.423 195.55 230 90.0 450 Millbury Road 43 274.595 37 274.448 0.52 0.45 0.234 1.261 187.23 656 750 63.9 **Millbury Road** 37 22 274.294 274.150 0.38 0.45 0.171 1.432 178.12 708 57.3 750 Nelkydd Lane 22 273.807 21 273.630 0.30 0.45 0.135 4.362 164.49 1993 59.0 1050 275.450 274.864 Foxbury Road 42 36 0.47 0.45 0.212 0.212 200.63 118 72.6 375 Foxbury Road 36 274.784 35 274.550 0.35 0.45 0.158 0.369 191.97 197 46.7 375 Foxbury Road 35 274.408 21 274.210 0.18 0.45 0.450 0.081 232 185.50 39.6 450 - (

R = 0.45 (Single Family-Urban) / 0.75 (Townhouses & School) 1100 = 1799/(T+5)^0.810 Rational Formula Q=2.78AIR

Limit of flow velocity = 0.75m/s < V < 4.5m/s

*Allowable Peak Flow From 241 Reach Street

ALCULATED BY:	F.W.	DATE:	JUNE 2009	
CHECKED BY:	E.G.	DATE:	JUNE 2009	
PROJECT NO .:	02-3956	SHEET	1 OF 3	

PIPE			CONC.	TOTAL
RADE	CAP.	VEL.	TIME	TIME
(%)	(l∕s)	(m/s)	(min.)	(min.)
				10.00
0.40	284	1.27	2.58	12.58
1.50	549	2.46	0.39	12.97
1.20	491	2.20	0.43	13.40
				10.00
0.50	71	0.98	0.93	10.93
0.90	426	1.90	0.75	13.40
				10.00
3.00	175	2.39	0.60	10.60
0.60	230	1.40	0.60	11.19
0.30	351	1.20	0.95	12.15
				13.40
0.50	820	1.80	0.76	14.17
				10.00
1.00	101	1.38	0.48	10.48
1.00	101	1.38	0.48	10.48
0.66	242	1.47	1.02	11.50
				10.00
1.00	101	1.38	0.48	10.48
). 9 4	288	1.76	0.85	11.34
).23	557	1.22	0.87	12.37
).25	582	1.28	0.75	13.12
				14.17
).30	1560	1.75	0.56	14.73
				10.00
).81	164	1.44	0.84	10.84
).50	129	1.14	0.69	11.52
).50	210	1.28	0.52	12.04

APPENDIX B Sanitary Sewer Design

LEGEND	
0.20	- AREA IN HECTARES - POPULATION
	- SANITARY DRAINAGE BOUNDARY - DIRECTION OF SEWER FLOW PROPOSED

		241 Reach St 17:386 Uxbridge March 1, 201	9		Unit Type: S - Single T- Townho A - Apartm	Family Dwell buse Unit ent Unit	Persons per unit i 3.50 3.00 N/A	P.F. = Q residenti Q residenti Q infiltratio Q institutio Q commerci	NOTES + 1 +4 a 364 a 364 a 22,500 n 112,000 ci 180,000	14 + (pop) ^ 0.5 ↓ l/p/d (For lo ↓ l/p/d (For tr) l/ha/d (0.2) l/ha/d (1.3) l/ha/d (2.0	MAX MIN acal sewer siz unk sewer siz 5 l/s/ha) 1/s/ha) 3 l/s/ha)	3.8 1.5 zing) ting)				Designed B Checked By	KLD AK			/		ABO 2 ASS	URIN SOCIA	KIM TES	BLE LTD.									
															5	SANITARY	SEWER D	ESIGN																
			TOTAL DES	SIGN AREA	Reside	ntial Area		Known I	_ot Fabric		RESID Addi	E NTIAL tional Know	n Lot Fabric	сТуре		Cummula	tive Flows		-		СОМ	MERCIAL A		ONAL			TOTAL FLOWS			PIPE [ESIGN			
Location	Upstream Manhole	Downstrea m Manhole	Section Area (ha)	Cummulati ve Area (ha)	Section Area (ha)	Cummulati ve Area (ha)	Unit Type (S, T or A)	Unit Count	Density Per Unit (Type A)	Section Population (P/1000)	Unit Type (S, T or A)	Unit Count	Density Per Unit (Type A)	Section Population (P/1000)	Cummulati ve Population (P/1000)	Peak Factor	Residential Flow (I/s)	Infiltration Flow (I/s)	Institutiona I Section Area (ha)	ummulati ve stitutiona I Area (ha)	Cummulati ve Institutiona I Flow (I/s)	Commerci al Section Area (ha)	Cummulati ve Commerci al Area (ha)	Floor Space Index	Cummulati ve Floor Area (ha)	Cummulati ve Commerci al Flow (I/s)	Cummulati ve Design Flow (I/s)	Metric or Imperial Pipe Size	Pipe Size (mm)	Grade (%)	Capacity (I/s)	Velocity (m/s)	Length (m)	% Capacity
															NORTH C	OF COLIN	SANITAR		AGE															
Street A Street A	1A 4A	5A 5A	0.88	0.88	0.88	3 0.88 3 0.13	T	11 3	3.0 3.0	0.033	S N/A	12 0	3.5 0.0	0.042	0.075	3.800 3.800	1.20 0.14	0.23		0.000	0.00		0.000	1.000	0.000	0.00	0 1.43	METRIC	200 200	2.50 2.00	51.86 46.38	1.65 1.48	122.7 19.1	2.8%
Street B	8A	11A	1.00	1.00	1	1 1.00	Т	7	3.0	0.021	S	12	3.5	0.042	0.063	3.800	1.01	0.26		0.000	0.00		0.000	1.000	0.000	0.00) 1.27	METRIC	200	0.50	23.19	0.74	158.9	5.5%
Street C Street C	5A 11A	11A 17-27	0.39	1.40 0.20	0.39	9 1.40 2 0.20	T	4	3.0 3.5	0.012	S N/A	5 0	3.5 0.0	0.018	0.114 0.184	3.800 3.800	1.83 2.95	0.36		0.000	0.00		0.000	1.000 1.000	0.000	0.00	0 2.19	METRIC METRIC	200 200	6.00 0.50	80.34 23.19	2.56 0.74	91.3 110.2	2.7% 12.9%
								Total	population:	0.184									Go	overning	Flow on Nelk	ydd Lane be	etween MH 17	-17 to MH 2	3-13 (Aspen	er Durham Sa	an Design Sh	neet Project	# PB02-3956	Date: Jan 2	009)			
																			Gov	erning Se	ections Cumu	lative Desig	In Flow occurs	between M	H 17-17 to N	MH 23-13 =	21.84	L/s						1
																					Davis - Els	A11	Capacity	between M	H 17-17 to N	MH 23-13 =	24.19	L/s				<u> </u>		ļ
						-															Design Flov	v Anocated	Curre	eropment o ent available	e capacity at	t MH 17-17=	= 1.65	L/S				┝───┘	'	
																						Propo	Propos sod Euturo Do	ed Sanitary	Design for E	to Nelleydd-	/oniea:	1/e				┢────┘		
																					Prop	posed Deve	lopment Desi	ign Flow at	Governing	MH 17-17 =	23.19	L/s	Therefore,	Proposed De	sign Flow i	s less than (apacity.	
										+											├ ──┤		┥──┤				+	+	+	<u> </u>		└────′	·	·
							1	1																						1		├─── [/]	·	
									1					1												1								<u> </u>
										-											ļ								-			└─── ′	·'	
																											+	+				┝───┘	'	
	1		1	1		1	1	1	1	1			1	1			1	1								1	1	1	1				i	í ———
																																		<u> </u>

	UP S	TREAM	DOWN	STREAM		SECTIO	N	CUMU	JLATIVE	1	POPULATION	INFIL.	INSTITU	JTIONAL	CUM.			Р	IPE		1.1
STREET						3.5 p/un	it	POP.	AREA	м	FLOW	0.26	AREA	FLOW	FLOW	LENGTH	SIZE	GRADE	CAP.	VEL.	TYPE
	МН	INVERT	МН	INVERT	POP.	UNITS	AREA		(ha)		(l/s)	(I/s/ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(I/s)	(m/s)	
Euture Nelkydd	FUT	277 250	17-27	276 840	77	22	1.63	77	1.63	3.80	1.23	0.42			1.65	87.5	200	0.50	24.19	0.75	DB-35
Nelkydd Lane	17-27	276.810	17-26	276 240	25	7	0.47	102	2 10	3.80	1.62	0.55			2.17	56.6	200	1.00	34.22	1.06	DR-35
Nelkydd Lane	17-26	276.010	17-25	275.950	28	8	0.52	130	2.62	3.80	2.07	0.68			2.75	51.9	200	0.50	24.19	0.75	DB-35
Nelkydd Lane	17-25	275.870	17-24	274.577	18	5	0.50	147	3.12	3.80	2.35	0.81			3.16	79.6	200	1.63	43.68	1.35	DR-35
Village Green Lane	17-27	277.780	17-28	275.790	18	5	0.61	18	0.61	3.80	0.28	0.16			0.44	79.5	200	2.50	54.10	1.67	DR-35
Havfield Avenue	17-28	275.610	17-29	275.110	21	6	0.37	39	0.98	3.80	0.61	0.25			0.87	49.5	200	1.00	34.22	1.06	DR-35
Hayfield Avenue	17-29	275.080	17-24	274.450	28	8	0.47	67	1.45	3.80	1.06	0.38			1.44	63.5	200	1.00	34.22	1.06	DR-35
Nelkydd Lane	17-24	274.300	17-23	273.662	18	5	0.48	231	5.05	3.80	3.69	1.31			5.00	82.8	200	0.77	30.02	0.93	DR-35
Village Green Lane	17-28	276.040	17-30	275.210	21	6	0.48	21	0.48	3.80	0.34	0.12			0.46	90.0	200	0.92	32.82	1.01	DR-35
Millbury Road	17-30	275.030	17-31	274.727	28	8	0.50	49	0.98	3.80	0.78	0.25			1.04	60.7	200	0.50	24.19	0.75	DR-35
Millbury Road	17-31	274.677	17-23	274.407	14	4	0.29	63	1.27	3.80	1.01	0.33			1.34	54.1	200	0.50	24.19	0.75	DR-35
Nelkydd Lane	17-23	273.541	17-22	273.390	7	2	0.18	301	6.50	3.80	4.80	1.69			6.49	30.3	200	0.50	24.19	0.75	DR-35
Nelkydd Lane	17-22	273.321	17-21	273.170	11	3	0.25	312	6.75	3.80	4.97	1.76			6.73	30.3	200	0.50	24.19	0.75	DR-35
Village Green Lane	17-30'	275.662	17-34	274.761	21	6	0.49	21	0.49	3.80	0.34	0.13			0.46	90.1	200	1.00	34.22	1.06	DR-35
Foxbury Road	17-34	274.661	17-33	273.970	21	6	0.45	42	0.94	3.80	0.67	0.24			0.91	69.1	200	1.00	34.22	1.06	DR-35
Foxbury Road	17-33	273.868	17-32	273.640	21	6	0.39	63	1.33	3.80	1.01	0.35			1.35	45.5	200	0.50	24.24	0.75	DR-35
Foxbury Road	17-32	273.609	17-21	273.410	0	0	0.07	63	1.40	3.80	1.01	0.36	1		1.37	36.1	200	0.55	25.38	0.78	DR-35
DESIGN BY: CHECKED BY:	F.W. E.G.		DATE: DATE:	JAN. 20 JAN. 20	009	averagi infiltrati single f school	e Flow = 36 on = 22.5c. amily - 60 p - 112 c.m./	54 l/p/d <u>or</u> 0.0 .m./ha/d <u>or</u> 0. o/ha <u>or</u> 3.5 p/ gross ha / da	0042 l/p/s 26 l/ha/s unit y incl. infil. an	d peaking ef	fect			SANITAF MUN ESTATE	RY SEW ICIPALIT S OF A	ER DES	SIGN DURH A - PI	SHEE AM HASE	Т 4		
PROJECT #:	PB02	2-3956	SHEET:	1 OF	3																

*Allowable Peak Flow From 241 Reach Street

1.1

H:\dwg\PBJOB\2002\Pb02-3956\Design\11727 STM & SAN.xls

	UPS	TREAM	DOWN	STREAM		SECTIO	N	CUMU	LATIVE		POPULATION	LATION INFIL. INSTITUTIONAL CUM. PIPE			IPE						
STREET						3.5 p/ur	nit	POP.	AREA	м	FLOW	0.26	AREA	FLOW	FLOW	LENGTH	SIZE	GRADE	CAP.	VEL.	TYPE
	МН	INVERT	МН	INVERT	POP.	UNITS	AREA		(ha)		(l/s)	(I/s/ha)	(ha)	(l/s)	(I/s)	(m)	(mm)	(%)	(I/s)	(m/s)	
Nelkydd Lane	17-21	273.159	17-20	272.733	28	8	0.64	403	8.79	3.80	6.42	2.29			8.71	85.2	200	0.50	24.19	0.7461	DR-38
Village Green Lane	17-34'	274.868	17-35	274.410	14	4	0.34	14	0.34	3.80	0.22	0.09			0.31	45.8	200	1.00	34.22	1.06	DR-35
Village Green Lane	17-35	274.380	17-13	273.872	35	10	0.78	49	1.12	3.80	0.78	0.29			1.07	101.5	200	0.50	24.19	0.75	DR-35
SCHOOL	School		17-13		0	0	0.00	0	0.00	3.80	0.00	0.00	2.13	2.76	2.76	12.3	200	1.00	34.22	1.06	DR-35
Coral Creek Cresent	16-155	275.122	17-13	274.000	14	4	0.48	14	0.48	3.80	0.22	0.12			0.35	70.1	200	1.60	43.28	1.33	DR-35
Coral Creek Cresent	17-13	273.812	17-14	273.654	0	0	0.06	63	1.66	3.80	1.01	0.43	2.13	2.76	4.20	31.5	200	0.50	24.24	0.75	DR-35
Coral Creek Cresent	17-14	273.624	17-15	273.436	4	1	0.13	67	1.79	3.80	1.06	0.47	2.13	2.76	4.29	37.6	200	0.50	24.19	0.75	DR-35
Coral Creek Cresent	17-15	273.406	17-20	272.812	32	9	0.76	98	2.55	3.80	1.56	0.66	2.13	2.76	4.99	118.8	200	0.50	24.19	0.75	DR-35
Block 52	External		17-20		196	56	2.83	196	2.83	3.80	3.13	0.74			3.86						
Nelkydd Lane	17-20	272.752	17-19	272.287	28	8	0.72	725	14.89	3.80	11.56	3.87	2.13	2.76	18.20	93.0	200	0.50	24.19	0.75	DR-35
Caseton Cresent	17-16	274.300	16-156	273.635	18	5	0.42	18	0.42	3.80	0.28	0.11			0.39	66.5	200	1.00	34.22	1.06	DR-35
Caseton Cresent	16-156	273.572	16-157	273.350	11	3	0.26	28	0.68	3.80	0.45	0.18			0.62	22.1	200	1.00	34.28	1.06	DR-35
Caseton Cresent	16-157	273.321	17-19	272.347	28	8	0.64	56	1.32	3.80	0.89	0.34			1.24	97.4	200	1.00	34.22	1.06	DR-35
Nelkydd Lane	17-19	272.257	17-18	272.072	11	3	0.27	791	16.48	3.80	12.62	4.28	2.13	2.76	19.67	37.0	200	0.50	24.19	0.75	DR-35
Nelkydd Lane	17-18	272.042	17-17	271.848	14	4	0.34	805	16.82	3.80	12.85	4.37	2.13	2.76	19.98	38.8	200	0.50	24.19	0.75	DR-35
PARK	PARK		16-159	1	0	0	1.90	0	1.90	3.80	0.00	0.49	_		0.49			1			
Furlan Court	16-159	273.334	16-158	272.461	25	7	0.57	25	2.47	3.80	0.40	0.64			1.04	87.3	200	1.00	34.22	1.06	DR-35
Furlan Court	16-158	272.431	17-17	272.068	0	0	0.08	25	2.55	3.80	0.40	0.66			1.06	36.3	200	1.00	34.22	1.06	DR-35
NELKYDD LANE	17-17	271.818	23-13	271.268	35	10	0.91	865	20.28	3.80	13.81	5.27	2.13	2.76	21.84	110.0	200	0.50	24.19	0.75	DR-35
DEDICHEN	E .W		DATE		102	average infiltratio	e Flow = 36 on = 22.5c.	54 l/p/d <u>or</u> 0.00 m./ha/d <u>or</u> 0.2	042 l/p/s 26 l/ha/s	1				SANITAF	RY SEW		SIGN	SHEE	Г		
DESIGN BY:	F.W.		DATE:	JAN, 20	00	single fa	arriny - 60 p	una <u>or</u> 3.5 p/t	und Includio	المحمد المحمد ا					S OF AL			AN	4		
CHECKED BY:	E.G.	2050	DATE:	JAN. 20	09	school -	- 112 c.m./(gross na / day	ninci, intil, and	peaking et	ect			ESTATE	S OF A	VUNLE	A - PI	HASE			
PROJECT #:	PB02	-3950	SHEET:	2 UF	3	_								A Comments							

*Limiting Sewer Capacity at End of Development Phase Printed on: 3/31/2009

14

H:\dwg\PBJOB\2002\Pb02-3956\Design\11727 STM & SAN.xls

	UPS	TREAM	DOWN	STREAM		SECTIC	DN	CUM	JLATIVE		POPULATION	INFIL.	INSTIT	JTIONAL	CUM.			PI	PE		13.44
STREET						3.5 p/ur	nit	POP.	AREA	м	FLOW	0.26	AREA	FLOW	FLOW	LENGTH	SIZE	GRADE	CAP.	VEL.	ТҮРЕ
	МН	INVERT	мн	INVERT	POP.	UNITS	AREA		(ha)		(l/s)	(l/s/ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)	(m/s)	1
BROWNSCOMBE	23-11		23-12		21	6	0.49	21	0.49	3.80	0.34	0.13			0.46	63.9	200	1.00	34.22	1.0551	DR-3
BROWNSCOMBE	23-12		23-13		11	3	0.30	32	0.79	3.80	0.50	0.21			0.71	66.1	200	0.50	24.19	0.75	DR-3
NELKYDD LANE	23-13		23-7		39	11	0.75	935	21.82	3.80	14.92	5.67	2.13	2.76	23.36	93.1	200	0.60	26.50	0.82	DR-3
BROWNSCOMBE	23-11A		23-10		7	2	0.17	7	0.17	3.80	0.11	0.04			0.16	22.2	200	1.00	34.22	1.06	DR-35
BROWNSCOMBE	23-10		23-9		28	8	0.66	35	0.83	3.80	0.56	0.22			0.77	64.7	200	0.50	24.19	0.75	DR-35
BROWNSCOMBE	23-9		23-8		18	5	0.45	53	1.28	3.80	0.84	0.33			1.17	57.0	200	0.50	24.19	0.75	DR-35
BROWNSCOMBE	23-8		23-7		25	7	0.56	77	1.84	3.80	1.23	0.48			1.71	90.1	200	1.30	39.01	1.20	DR-35
NELKYDD LANE	23-7		23-6		7	2	0.21	1019	23.87	FALSE	0.00	6.21	2.13	2.76	8.97	52.7	200	0.50	24.19	0.75	DR-35
NELKYDD LANE	23-6		22-215		0	0	0.24	1019	24.11	FALSE	0.00	6.27	2.13	2.76	9.03	110.0	200	0.50	24.19	0.75	DR-35
NELKYDD LANE	22-215		22-214		0	0	0.11	1019	24.22	FALSE	0.00	6.30	4.37	5.66	11.96	58.7	200	1.55	42.60	1.31	DR-35
NELKYDD LANE	22-214		22-213		0	0	0.10	1019	24.32	FALSE	0.00	6.32	4.37	5.66	11.99	52.3	200	0.60	26.50	0.82	DR-35
Reach Street	200	278.223	100	277.218	293	5	3.61	293	3.61	3.80	4.67	0.94			5.61	100.5	250	1.00	62.04	1.22	DR-35
Reach Street	100	277.118	EX 16-BB	277.058	0	0	0.00	293	3.61	3.80	4.67	0.94	1		5.61	3.0	250	2.00	87.74	1.73	DR-35
						averag infiltrati	e Flow = 3	64 l/p/d <u>or</u> 0.0 .m./ha/d <u>or</u> 0.	0042 l/p/s 26 l/ha/s					SANITAF	RY SEW		SIGN	SHEET	Г		
CHECKED BY:	F.W.		DATE:	JAN. 20	008 108	single f	amily - 60 - 112 c.m./	p/na <u>or</u> 3.5 p/ oross ha / da	unit v incl. infil. an	d peaking ef	fect		2	ESTATE	S OF A	VONLE	A - PI	HASE 4	1		
PRO IECT #:	PB02	-3956	SHEET	3 OF	3																

14

H:\dwg\PBJOB\2002\Pb02-3956\Design\11727 STM & SAN.xls

APPENDIX C LID Design

Site Description

Total Site Area	3.62	На
Proposed Development Area	2.70	Ha
LSRCA Buffer + Woodlot	0.92	Ha

General Infiltration Requirements

Total Mixed Impervious Surface Area (0.75 coefficient)	20600.0	m²
Total Roof Impervious Area (0.85 coefficient)	6400.0	m²
Total Site Impervious Area	20890.0	m²
Storm to Infiltrate	40	mm
Total Site Volume to Infiltrate	836	m ³

Proposed Infiltration

LID Unit	Down- stream LID Unit	Capture Area	Contact Area of Impervious- ness	Depth	Proposed LID Infiltration Volume	Drain Down Time
		На	m ²	m	m ³	Hours
Rear Yard LID #1	Perforated Pipe #2	0.12	900.0	0.7	34.8	24.0
Perforated Pipe #0	Perforated Pipe #1	0.04	365.5	0.7	14.1	24.0
Perforated Pipe #1	Perforated Pipe #2	0.13	1005.0	0.7	12.2	24.0
Perforated Pipe #2	Perforated Pipe #4	0.12	1020.0	0.7	22.1	24.0
Perforated Pipe #3	Perforated Pipe #4	0.20	1492.5	0.7	54.7	24.0
Perforated Pipe #4	Perforated Pipe #5	0.48	3723.8	0.7	35.9	24.0
Rear Yard LID #2	Perforated Pipe #5	0.30	2250.0	0.7	95.1	24.0
Perforated Pipe #5	Storm Chamber 1	0.08	672.4	0.7	25.7	24.0
Rear Yard LID #3	N/A	0.11	825.0	0.7	24.3	24.0
Rear Yard LID #5	Perforated Pipe #7	0.09	636.0	0.7	17.1	24.0
Perforated Pipe #6	Perforated Pipe #8	0.00	0.0	0.7	10.8	24.0
Perforated Pipe #7	Perforated Pipe #8	0.11	917.1	0.7	15.5	24.0
Perforated Pipe #8	Storm Chamber 1	0.22	1784.5	0.7	88.5	24.0
Rear Yard LID #4	Storm Chamber 1	0.06	426.0	0.7	14.4	24.0
Storm Chamber 1	Storm Chamber 2	0.64	4878.9	1.4	197.1	47.9
Storm Chamber 2	N/A	0.00	0.0	1.4	180.5	47.9
	TOTAL	2.70		TOTAL	843	

Cumulative Infiltration Volumes

LID Unit	Down- stream LID Unit	Required Infiltration Volume per Reach	Cummulative Infiltration Required	Infiltration Available per Reach	Cummulative Infiltration Available	Available Volume Infiltrated per Reach
		m ³	m ³	m ³	m ³	m ³
Rear Yard LID #1	Perforated Pipe #2	36.0	36.0	34.8	34.8	34.8
Perforated Pipe #0	Perforated Pipe #1	14.6	14.6	14.1	14.1	14.1
Perforated Pipe #1	Perforated Pipe #2	40.2	54.8	12.2	26.3	26.3
Perforated Pipe #2	Perforated Pipe #4	40.8	131.6	22.1	83.2	83.2
Perforated Pipe #3	Perforated Pipe #4	59.7	59.7	54.7	54.7	54.7
Perforated Pipe #4	Perforated Pipe #5	149.0	340.3	35.9	173.8	173.8
Rear Yard LID #2	Perforated Pipe #5	90.0	90.0	95.1	95.1	90.0
Perforated Pipe #5	Storm Chamber 1	26.9	457.2	25.7	294.6	294.6
Rear Yard LID #3	N/A	33.0	33.0	24.3	24.3	24.3
Rear Yard LID #5	Perforated Pipe #7	25.4	25.4	17.1	17.1	17.1
Perforated Pipe #6	Perforated Pipe #8	0.0	25.4	10.8	27.9	25.4
Perforated Pipe #7	Perforated Pipe #8	36.7	36.7	15.5	15.5	15.5
Perforated Pipe #8	Storm Chamber 1	71.4	133.5	88.5	131.9	131.9
Rear Yard LID #4	Storm Chamber 1	17.0	17.0	14.4	14.4	14.4
Storm Chamber 1	Storm Chamber 2	195.2	802.9	197.1	637.9	637.9
Storm Chamber 2	N/A	0.0	802.9	180.5	818.4	818.4
Sum of Column=		836		843		843

Infiltration Summary

Total Site Volume Required to Infiltrate	836	m ³
Infiltration Volume Provided	843	m ³
Infiltration Volume Achieved	836	m ³
Remaining Volume Required	0.0	m ³

Rear Yard LID #1 Infiltration Requirements

<i>LID capture area:</i> Total area of imperviousness: Volume to infiltrate: Target Volume to be infiltrated:		0.12 900.0 40.0 36.0	Ha m ² mm m ³
Maximum clearstone depth: Where	d= — P= T=	PT 1000 28.8 24.0	percolation rate of native soil (mm/h) detention time (24 hours)
	d= 	0.69 1000 V Pnt	
Where P=K/f.s. K = 72mm/hr infiltration rate f.s.= 2.5	A= V= P= t= A=	36.0 28.8 0.4 24.0 (1000)(12.5)	Bottom area of trench (m^2) runoff volume to be infiltrated (m^3) percolation rate of native soil (mm/h) porosity of storage media (0.4 for clear stone) detention time (24 hours)

A= 130.2

Contact Area	126.00 m ²	
Depth of clearstone	0.69 m	
Trench Volume	87.09 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	34.84 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	1.16	m ³

Perforated Pipe #0 Infiltration Requirements

<i>LID capture area:</i> Total area of imperviousness Volume to infiltrate: Target Volume to be infiltrated:		0.04 365.5 40.0 14.6	Ha m ² mm m ³
Maximum clearstone depth: Where	d= - P= T=	PT 1000 28.8 24.0	percolation rate of native soil (mm/h) detention time (24 hours)
	d=	0.69	
	A=-	1000 V Pnt	_
Where	A=		Bottom area of trench (m ²)
	V=	14.6	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=-	(1000)(12.5) (12.0)(0.4)(72.0)	-

A= 52.9

Contact Area	51.00 m ²
Depth of clearstone	0.69 m
Trench Volume	35.25 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	14.10 m ³

Total Imperviousness to be		
infiltrated in downstream LID	0.52	m ³

Perforated Pipe #1 Infiltration Requirements

Volume to be infiltrated from Upst So	ream urce:	0.5	m³
LID capture	area:	0.13	На
Total area of impervious	sness	1005.0	m ²
Volume to infi	ltrate:	40.0	mm
Target Volume to be infiltrated:		40.2	m ³
Total Target Volume Required fo	or LID ation:	40.7	m ³
Maximum clearstone depth:	d=	PT 1000	_
Where	P=	28.8	percolation rate of native soil (mm/h)
	T=	24.0	detention time (24 hours)
	d=	0.69	
	•	1000 V	
	A=-	Pnt	-
Where	A=		Bottom area of trench (m ²)
	V=	40.2	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=	(1000)(12.5) (12.0)(0.4)(72.0)	-

A= 145.4

Contact Area	44.00 m ²
Depth of clearstone	0.69 m
Trench Volume	30.41 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	12.17 m ³

Total Imperviousness to be		
infiltrated in downstream LID	28.55	m ³

Perforated Pipe #2 Infiltration Requirements

Volume to be infiltrated from Upst So	ream urce:	29.7	m ³
LID capture	area:	0.12	На
Total area of impervious	sness	1020.0	m ²
Volume to infil	trate:	40.0	mm
Reach Volume to be infiltr	rated:	40.8	m ³
Total Target Volume Required fo Infiltra	r LID ation:	70.5	m³
Maximum clearstone depth:	d=-	PT 1000	_
Where	P=	28.8	percolation rate of native soil (mm/h)
	T=	24.0	detention time (24 hours)
	d=	0.69	
	Δ	1000 V	_
	~-	Pnt	
Where	A=		Bottom area of trench (m ²)
	V=	40.8	runoff volume to be infiltrated (m ³)
P=K/f.s. P=		28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate n=		0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	Α=-	(1000)(12.5)	_

<u>م_</u>	(1000)(12.5)
4=	(12.0)(0.4)(72.0)

A= 147.6

Contact Area	80.00 m ²	
Depth of clearstone	0.69 m	
Trench Volume	55.30 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	22.12 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	48.40	m ³

Perforated Pipe #3 Infiltration Requirements

<i>LID capture</i> Total area of imperviou Volume to in Reach Volume to be infi	e area: usness filtrate: ltrated:	0.20 1492.5 40.0 59.7	Ha m ² mm m ³
Maximum clearstone depth: Where	d= - P= T=	PT 1000 28.8 24.0	percolation rate of native soil (mm/h) detention time (24 hours)
Where	d= A=-	0.69 1000 V Pnt	Bottom area of trench (m ²)
P=K/f.s. K = 72mm/hr infiltration rate f.s.= 2.5	A= V= P= n= t=	59.7 28.8 0.4 24.0	runoff volume to be infiltrated (m ³) percolation rate of native soil (mm/h) porosity of storage media (0.4 for clear stone) detention time (24 hours)
	A=-	(1000)(12.5) (12.0)(0.4)(72.0))

A= 215.9

Contact Area	198.00 m ²	
Depth of clearstone	0.69 m	
Trench Volume	136.86 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	54.74 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	4.96	m ³

Perforated Pipe #4 Infiltration Requirements

Volume to be infiltrated from Ups Se	stream ource:	53.4	m³
LID capture	e area:	0.48	На
Total area of imperviou	usness	3723.8	m ²
Volume to int	filtrate:	40.0	mm
Reach volume to be infiltrated:		149.0	m ³
Total Target Volume Required f Infilti	or LID ration:	202.3	m³
Maximum clearstone depth:	d=-	РТ	_
		1000	
Where	P= T	28.8	percolation rate of native soil (mm/h)
	1=	24.0	detention time (24 hours)
	d=	0.69	
	A=-	1000 V	
	-	Pnt	2
Where	A=		Bottom area of trench (m ²)
	V=	202.3	runoff volume to be infiltrated (m [°])
P=K/t.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 721111/11111111111111111111111111111111	n= +-	0.4	detention time (24 hours)
1.0 2.0	с= А=-	(1000)(12.5)	-
		(12.0)(0.4)(72.0)	

A= 731.7

Contact Area	130.00 m ²	
Depth of clearstone	0.69 m	
Trench Volume	89.70 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	35.88 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	166.43	m ³

Rear Yard LID #2 Infiltration Requirements

<i>LID capture</i> Total area of imperviou Volume to inf Target Volume to be infil	<i>area:</i> isness iltrate: trated:	0.30 2250.0 40.0 90.0	Ha m ² mm m ³
Maximum clearstone depth: Where	d= - P= T=	PT 1000 28.8 24.0	percolation rate of native soil (mm/h) detention time (24 hours)
	d=	0.69	
	A=-	1000 V Pnt	-
Where	A=		Bottom area of trench (m ²)
	V=	90.0	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=-	(1000)(12.5) (12.0)(0.4)(72.0)	

A= 325.5

Contact Area	344.00 m ²
Depth of clearstone	0.69 m
Trench Volume	237.77 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	95.11 m ³

Total Imperviousness to be		
infiltrated in downstream LID	0.00	m ³

Perforated Pipe #5 Infiltration Requirements

Volume to be infiltrated from Ups So	tream ource:	166.4	m ³
LID capture	area:	0.08	На
Total area of imperviou	sness	672.4	m ²
Volume to inf	iltrate:	40.0	mm
Volume to be infil	trated:	26.9	m ³
Total Target Volume Required for Infiltr	or LID ation:	193.3	m³
Maximum clearstone depth:	d=—	PT	
Where	P-	28.8	percolation rate of native soil (mm/h)
Where	T=	24.0	detention time (24 hours)
	d=	0.69	
	A=	1000 V	
		Pnt	2
Where	A=		Bottom area of trench (m ²)
	V=	193.3	runoff volume to be infiltrated (m ^o)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/nr inflitration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
1.5.= 2.0	ι= Α=(΄		0)

A= 699.2

Contact Area	93.00 m ²	
Depth of clearstone	0.69 m	
Trench Volume	64.17 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	25.67 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	167.65	m ³

Rear Yard LID #3 Infiltration Requirements

<i>LID capture</i> Total area of impervio Volume to in Target Volume to be infi	e area: usness filtrate: ltrated:	0.11 825.0 40.0 33.0	Ha m ² mm m ³
Maximum clearstone depth: Where	d= P= T=	PT 1000 28.8 24.0	percolation rate of native soil (mm/h) detention time (24 hours)
	d= A=-	0.69 1000 V Pnt	
Where P=K/f.s. K = 72mm/hr infiltration rate f.s.= 2.5	A= V= P= n= t=	33.0 28.8 0.4 24.0	Bottom area of trench (m ²) runoff volume to be infiltrated (m ³) percolation rate of native soil (mm/h) porosity of storage media (0.4 for clear stone) detention time (24 hours)
	A=-	(1000)(12.5) (12.0)(0.4)(72.0)

A= 119.4

Contact Area	88.00 m ²
Depth of clearstone	0.69 m
Trench Volume	60.83 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	24.33 m ³

Total Imperviousness to be		
infiltrated in downstream LID	8.67	m ³

Rear Yard LID #5 Infiltration Requirements

<i>LID capture</i> Total area of imperviou Volume to inf Target Volume to be infil	<i>area:</i> Isness filtrate: trated:	0.09 636.0 40.0 25.4	Ha m ² mm m ³
Maximum clearstone depth: Where	d= - P= T=	PT 1000 28.8 24.0	percolation rate of native soil (mm/h) detention time (24 hours)
	d=	0.69	
	A=-	1000 V Pnt	-
Where	A=		Bottom area of trench (m ²)
	V=	25.4	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=-	(1000)(12.5) (12.0)(0.4)(72.0)	-

A= 92.0

Contact Area	62.00 m ²
Depth of clearstone	0.69 m
Trench Volume	42.85 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	17.14 m ³

Total Imperviousness to be		
infiltrated in downstream LID	8.30	m ³

Perforated Pipe #6 Infiltration Requirements

Volume to be infiltrated from Ups So	stream ource:	8.3	m ³
LID capture	e area:	0.00	На
Total area of imperviou	isness	0.0	m ²
Volume to inf	iltrate:	40.0	mm
Volume to be infil	trated:	0.0	m ³
Total Target Volume Required for Infiltr	or LID ation:	8.3	m ³
Maximum clearstone denth:	d	PT	
Maximum clearstone depth.	u_ —	1000	
Where	P=	28.8	percolation rate of native soil (mm/h)
	T=	24.0	detention time (24 hours)
	d=	0.69	
	A=	1000 V	
		Pnt	
Where	A=		Bottom area of trench (m ²)
	V=	8.3	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72 mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
1.S.= 2.5	t=	24.0	detention time (24 nours)
	A=((1000)(12.5) (12.0)(0.4)(72.0))
	A= 3	0.0	

Contact Area	39.00 m ²
Depth of clearstone	0.69 m
Trench Volume	26.96 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	10.78 m ³

Total Imperviousness to be		
infiltrated in downstream LID	0.00	m ³

Perforated Pipe #7 Infiltration Requirements

<i>LID captul</i> Total area of impervio Volume to in Target Volume to be ini	re area: ousness nfiltrate: filtrated:	0.11 917.1 40.0 36.7	Ha m ² mm m ³
Maximum clearstone depth: Where	d=- P= T= d=	PT 1000 28.8 24.0 0.69	percolation rate of native soil (mm/h) detention time (24 hours)
Where P=K/f.s. K = 72mm/hr infiltration rate f.s.= 2.5	A=- A= V= P= n= t=	1000 V Pnt 36.7 28.8 0.4 24.0	Bottom area of trench (m ²) runoff volume to be infiltrated (m ³) percolation rate of native soil (mm/h) porosity of storage media (0.4 for clear stone) detention time (24 hours)
	A=-	(1000)(12.5) (12.0)(0.4)(72.0)	-

A= 132.7

Contact Area	56.00 m ²
Depth of clearstone	0.69 m
Trench Volume	38.71 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	15.48 m ³

Total Imperviousness to be		
infiltrated in downstream LID	21.20	m ³

Perforated Pipe #8 Infiltration Requirements

Volume to be infiltrated from Up S	stream Source:	21.2	m ³
LID captur	e area:	0.22	На
Total area of impervio	usness	1784.5	m ²
Volume to ir	filtrate:	40.0	mm
Volume to be inf	iltrated:	71.4	m ³
Total Target Volume Required Infilt	for LID ration:	92.6	m³
Maximum clearstone denth:	d	PT	
Maximum clearstone depth.	u=	1000	
Where	P=	28.8	percolation rate of native soil (mm/h)
	T=	24.0	detention time (24 hours)
	d=	0.69	
	A=	1000 V	
Where	A=	Pnt	Bottom area of trench (m^2)
	V=	92.6	runoff volume to be infiltrated (m^3)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A= (<u>(1000)(12.5)</u> 12.0)(0.4)(72.0	0)
	A= 33	34.9	

Contact Area	320.00 m ²	
Depth of clearstone	0.69 m	
Trench Volume	221.18 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	88.47 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	4.11	m ³

Rear Yard LID #4 Infiltration Requirements

<i>LID capture</i> Total area of imperviou Volume to infi Target Volume to be infil	<i>area:</i> usness filtrate: trated:	0.06 426.0 40.0 17.0	Ha m ² mm m ³
Maximum clearstone depth: Where	d= - P= T=	PT 1000 28.8 24.0	percolation rate of native soil (mm/h) detention time (24 hours)
	d=	0.69	
	A=-	1000 V Pnt	-
Where	A=		Bottom area of trench (m ²)
	V=	17.0	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=-	(1000)(12.5) (12.0)(0.4)(72.0)	-

A= 61.6

Contact Area	52.00 m ²
Depth of clearstone	0.69 m
Trench Volume	35.94 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	14.38 m ³

Total Imperviousness to be		
infiltrated in downstream LID	2.66	m ³

Storm Chamber 1 Infiltration Requirements

Volume to be infiltrated from Upst Source:	ream	174.43	m ³
LID capture	e area:	0.64	На
Total area of imperviou	usness	4878.9	m ²
Volume to in	filtrate:	40.0	mm
Volume to be infi	ltrated:	195.2	m ³
Total Target Volume Required f	ior LID ration:	369.6	m ³
Drain Down Time:	T=	1000d	
Brain Bown Time.		Р	
Where	P=	28.8	percolation rate of native soil (mm/h)
	d=	1.38	(m)
P=K/f.s.			
K = 72mm/hr infiltration rate	T=	47.92	detention time (Hours)
f.s.= 2.5			

Contact Area	357.00 m ²	
Depth of clearstone	1.38 m	
Trench Volume	492.66 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	197.06 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	172.52	m ³

Storm Chamber 2 Infiltration Requirements

Volume to be infiltrated from Upstream Source:	172.52	m³
LID capture area:	0.00	На
Total area of imperviousness	0.0	m ²
Volume to infiltrate:	40.0	mm
Volume to be infiltrated:	0.0	m ³
Total Target Volume Required for LID Infiltration:	172.5	m ³
Drain Down Time: T=	1000d	_
Where P=	28.8 1.4	percolation rate of native soil (mm/h) (m)
P=K/f.s.		()
K = 72mm/hr infiltration rate $T=$ f.s.= 2.5	47.92	detention time (Hours)

Contact Area	327.00 m ²	
Depth of clearstone	1.38 m	
Trench Volume	451.26 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	180.50 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	0.00	m ³

APPENDIX D Water Quantity Control Design

WOODLOT DRAINAGE TO THE ESTATES OF AVONLEA

Town of Uxbridge 3/12/2019

Existing Drainage Conditions to External Lands	Area (Ha)	Runoff Coefficient	AR
Drainage Area to Village Green Lane Accounted For By R.J, Burnside	0.58	0.35	0.203
Area of R.J. Burnsides AR Estimate Which is Applicable to The Site Area	0.38	0.35	0.133

Refer to Storm Drainage Plan in Appendix A, Drawing No ST - 1 by R.J. Burnside & Associates Limited

Proposed Drainage to External Lands	Area (Ha)	Runoff Coefficient	AR
Undeveloped runnoff	0.15	0.25	0.038
Developed runnoff	0.11	0.75	0.083
Total Area	0.26	Total AR=	0.120

Therefore, proposed AR is less than the original Estimate from R.J. Burnside & Associates.

STORM STORAGE QUANTITY REQUIREMENTS Town of Uxbridge 3/12/2019

Storm Intensity Curve	2-year	5-year	25-year	100-year
A	645.0	904.000	1234	1799
В	5	5.0	4	5
С	0.786	0.788	0.787	0.81
Intensity (mm/hr)	76.76	107.01	154.64	200.63

Time of Concentration = 10.000 min

		Area (ha)	Runoff	
Proposed			Coefficient	
	Development Capture	2.557	0.75	
	Preserved Woodlot	0.83	0.25	
	External Area	1.44	0.25	
	Total Capture Area	4.83	0.51	

Storm Intensity Curve	2-year	5-year	25-year	100-year
Proposed Uncontrolled Flow (m ³ /s)	0.53	0.74	1.07	1.39

	5 yr (m3/s)	100 yr (m3/s)
Allowable Target Discharge	0.221	0.414

STORM STORAGE QUANTITY REQUIREMENTS

100-YEAR POST To 100-YEAR TARGET Town of Uxbridge 3/12/2019

ENTRY TIME: TIME STEP 10.0 min 0.5 min

100 yr Post Storm - 100 yr Allowable Discharge					
TIME	INTENSITY (mm/hr)	PEAK DISCHARGE (m ³ /s)	RUNOFF VOLUME (m ³)	RELEASE VOLUME (m ³)	STORAGE VOLUME (m ³)
10.0	200.6	1.386	831.5	248.4	583.1
10.5	195.4	1.349	850.2	260.8	589.3
11.0	190.4	1.315	868.0	273.2	594.8
11.5	185.7	1.283	885.1	285.7	599.5
12.0	181.3	1.252	901.6	298.1	603.5
12.5	177.1	1.223	917.3	310.5	606.8
13.0	173.1	1.196	932.5	322.9	609.6
13.5	169.3	1.169	947.1	335.3	611.8
14.0	165.7	1.144	961.2	347.8	613.4
14.5	162.2	1.120	974.8	360.2	614.6
15.0	158.9	1.098	987.9	372.6	615.3
15.5	155.8	1.076	1000.7	385.0	615.6
16.0	152.8	1.055	1013.0	397.4	615.5
16.5	149.9	1.035	1024.9	409.9	615.0
17.0	147.1	1.016	1036.5	422.3	614.2
17.5	144.5	0.998	1047.7	434.7	613.0
18.0	141.9	0.980	1058.6	447.1	611.5
18.5	139.5	0.963	1069.3	459.5	609.7
19.0	137.1	0.947	1079.6	472.0	607.6
19.5	134.8	0.931	1089.6	484.4	605.3
20.0	132.6	0.916	1099.5	496.8	602.7

THEREFORE THE MAXIMUM VOLUME REQUIRED = TIME DURATION REQUIRED TO OBTAIN MAXIMUM STORAGE = 616 m³ 15.5 min

STORM STORAGE QUANTITY REQUIREMENTS 5-YEAR POST To 5-YEAR TARGET Town of Uxbridge 3/12/2019

ENTRY TIME:

10.0 min

5 yr Post Storm - 5 yr Allowable Discharge										
		PEAK	RUNOFF	RELEASE	STORAGE					
TIME	INTENSITY (mm/hr)	DISCHARGE	VOLUME	VOLUME	VOLUME					
		(m ³ /s)	(m ³)	(m ³)	(m ³)					
10.0	107.0	0.739	443.5	132.6	310.9					
10.5	104.3	0.720	453.8	139.2	314.5					
11.0	101.7	0.702	463.6	145.9	317.8					
11.5	99.3	0.686	473.1	152.5	320.6					
12.0	97.0	0.670	482.2	159.1	323.1					
12.5	94.8	0.655	490.9	165.8	325.2					
13.0	92.7	0.640	499.3	172.4	327.0					
13.5	90.7	0.627	507.5	179.0	328.5					
14.0	88.8	0.613	515.3	185.6	329.7					
14.5	87.0	0.601	522.9	192.3	330.6					
15.0	85.3	0.589	530.3	198.9	331.4					
15.5	83.7	0.578	537.4	205.5	331.9					
16.0	82.1	0.567	544.3	212.2	332.1					
16.5	80.6	0.557	551.0	218.8	332.2					
17.0	79.1	0.547	557.5	225.4	332.1					
17.5	77.7	0.537	563.8	232.1	331.8					
18.0	76.4	0.528	570.0	238.7	331.3					
18.5	75.1	0.519	575.9	245.3	330.6					
19.0	73.9	0.510	581.8	251.9	329.8					
19.5	72.7	0.502	587.5	258.6	328.9					
20.0	71.5	0.494	593.0	265.2	327.8					

THEREFORE THE MAXIMUM VOLUME REQUIRED =

TIME DURATION REQUIRED TO OBTAIN MAXIMUM STORAGE =

m³

min

332

16.5

STORM STORAGE QUANTITY REQUIREMENTS

17:386 241 Reach St. Uxbridge Quantity Control Analysis Approach Summary

In order to control the proposed sites storm water quantity as per required, three systems will be used in conjunction:

- A combined stacked StormChamber system to store the majority of the quantity as per required.

- The poposed storm sewer system and over-sized pipes for additional storage.

- Orifice plates on the downstream manhole to restrict the flow to the allowable release rate and backup the excess flow into the upstream storage system (previous systems mentioned).

17:386 241 Reach St. Uxbridge Quantity Control Analysis

Quantity Control Requirement

MAXIMUM VOLUME REQUIRED									
100 yr Post Storm - 100 yr Allowable Discharge 616 m3									
5 yr Post Storm - 5 yr Allowable Discharge	332	m3							
Max storage Required=	616	m3							

Proposed Quantity Control Measures

Storm Water Top Storage Elevation =

279.15 m

Storm Chamber Sto	rage		
Total Base Chamber Storage	524	m3	
Base Storage Infiltration Quantity	230	m3	
Total Top Chamber Storage	174.0	m3	System storage to Max ponding elevation= 279.15 to avoid sumpu
Storm Chamber Quantity Control Storage	468	m3	

Maintenance Hole Storage											
Aanhole Number MH16 MH15 MH14 MH13 MH12 MH11 MH10 MH9 MH8 MH5 MH											
Manhole Diameter (mm)	1800	1800	1800	1800	1200	1200	1200	1800	1800	1200	1200
Lowest Obvert Elevation (m)	278.01	278.17	278.65	278.88	278.99	279.15	279.23	278.81	278.91	279.22	279.24
Pipe Diameter (m)	0.525	0.525	0.750	0.750	0.450	0.450	0.375	0.750	0.750	0.300	0.375
Lowest Invert Elevation (m)	277.49	277.65	277.90	278.13	278.54	278.70	278.86	278.06	278.16	278.92	278.87
Depth of Storage (m)	1.7	1.5	1.3	1.0	0.6	0.4	0.3	1.1	1.0	0.2	0.3
Storage Volume (m ³)	4.23	3.83	3.18	2.59	0.69	0.51	0.33	2.77	2.52	0.26	0.32

Total Manhole Storage available =

21.24 m³

17:386

241 Reach St. Uxbridge

Quantity Control Analysis

	Pipe Storage																
MH ID	Diameter	D (m)	DS Obv	DS Inv	Raw Depth	Depth	US obv	US Inv	Raw Depth	Depth	Avg Depth	r	h	Theta (rad)	Area at Depth	Pipe Length	Volume
MH16-15	525	0.525	278.060	277.54	0.525	0.525	278.180	277.66	0.525	0.525	0.525	0.000	0.000	0.000	0.216	35.7	7.73
MH15-14	525	0.525	278.180	277.66	0.525	0.525	278.180	277.66	0.525	0.525	0.525	0.000	0.000	0.000	0.216	20.0	4.33
MH14-13	1050	1.050	279.030	277.98	1.050	1.050	279.180	278.13	1.020	1.020	1.035	0.510	0.015	0.479	0.863	75.0	64.76
MH13-12	900	0.900	279.100	278.20	0.900	0.900	279.440	278.54	0.610	0.610	0.755	0.305	0.145	1.652	0.570	37.1	21.14
MH12-11	675	0.675	279.450	278.78	0.375	0.375	279.560	278.89	0.265	0.265	0.320	0.018	0.320	3.038	0.167	37.1	6.20
MH11-10	450	0.450	279.560	279.11	0.040	0.040	279.620	279.17	-0.020	0.000	0.020	0.205	0.020	0.850	0.002	16.4	0.04
MH10-CBMH1	375	0.375	279.620	279.25	-0.095	0.000	279.630	279.26	-0.105	0.000	0.000	0.188	0.000	0.000	0.000	31.7	0.00
MH10-RLCB5	300	0.300	279.620	279.32	-0.170	0.000	279.620	279.32	-0.170	0.000	0.000	0.150	0.000	0.000	0.000	39.3	0.00
MH14-9	900	0.900	278.850	277.95	0.900	0.900	278.960	278.06	0.900	0.900	0.900	0.000	0.000	0.000	0.636	36.5	23.22
MH9-8	900	0.900	278.960	278.06	0.900	0.900	279.060	278.16	0.900	0.900	0.900	0.000	0.000	0.000	0.636	17.5	11.13
MH8-7	900	0.900	279.060	278.16	0.900	0.900	279.170	278.27	0.880	0.880	0.890	0.440	0.010	0.422	0.635	19.1	12.13
MH7-6	900	0.900	279.170	278.27	0.880	0.880	279.300	278.40	0.750	0.750	0.815	0.365	0.085	1.249	0.606	18.1	10.96
MH6-5	300	0.300	279.300	279.00	0.150	0.150	279.220	278.92	0.230	0.230	0.190	0.040	0.110	2.602	0.047	18.3	0.86
MH5-RLCB4	300	0.300	279.220	278.92	0.230	0.230	279.680	279.38	-0.230	0.000	0.115	0.035	0.115	2.671	0.025	37.8	0.94
MH6-MH4	375	0.375	279.300	278.93	0.225	0.225	279.230	278.86	0.295	0.295	0.260	0.072	0.115	2.348	0.082	4.0	0.33
MH4-MH3	375	0.375	279.230	278.86	0.295	0.295	283.540	283.17	-4.015	0.000	0.147	0.040	0.147	2.712	0.040	102.0	4.11

Total Pipe Storage Available =

167.89 m³

17:386 241 Reach St. Uxbridge Quantity Control Analysis

Summary of Quantity Control Measures

Quantity Control Required	615.6	m3
Proposed Storm Chamber Storage	468.0	m3
Proposed Manhole Storage	21.24	m3
Proposed Pipe Storage	167.89	m3
Total Proposed Storage Volume	657.13	m3

Project: Venetian, Uxbridge

Engineer: Location: 241 Reach St, Uxbridge

Location:	241 Reach St, Uxbridge
Date:	March 7/19

If you have any Questions or Concerns Contact us at info@stormchambers.com

Inclue Perimeter Stone in Calculations

Location: 241 Reach St, Uxbridge		
Date: March 7/19		
Choose a Chamber Model	SC-34	-
Choose a Units System	Metric	-
Total Number of Chambers	98	
Void Space in Stone (%)	40%	
Elevation of Stone Base (meters)	276.32	
Stone Above Chambers (mm)	150	
Stone Below Chambers (mm)	1380	
Space Between Rows (mm)	230	
Total Number of Rows	10	

StormChamber Staged Storage										
Height of	Incremental Single	Incremental Total	In cromortal Cta	Incromontal Ch 8 Ct	Cumulative Ch. 9. Cl	Elevention				
Height of System (mm)	Chamber (cubic	Chambers (cubic	(cubic meters)	(cubic meters)	cumulative Ch & St (cubic meters)	Elevation (meters)				
System (mm)	meters)	meters)	(cubic meters)	(cubic meters)	(cubic meters)	(meters)				
2393.00	0.000	0.000	4.238	4.238	524.121	278.713				
2367.00	0.000	0.000	4.238	4.238	515 645	278.662				
2316.80	0.000	0.000	4.238	4.238	511.407	278.637				
2291.40	0.000	0.000	4.238	4.238	507.169	278.611				
2266.00	0.000	0.000	3.838	3.838	502.931	278.586				
2243.00	0.013	1.274	3.729	5.003	499.093	278.563				
2217.60	0.025	2.450	3.258	5.708	494.090	278.538				
2152.20	0.031	3.626	2.788	6.414	482.321	278.487				
2141.40	0.041	4.018	2.631	6.649	475.907	278.461				
2116.00	0.045	4.410	2.474	6.884	469.258	278.436				
2090.60	0.048	4.704	2.357	7.061	462.374	278.411				
2065.20	0.051	4.998	2.239	7.237	455.313	278.385				
2039.80	0.054	5.292	2.122	7.414	448.076	278.360				
1989.00	0.059	5.782	1.926	7.708	433.072	278.309				
1963.60	0.061	5.978	1.847	7.825	425.364	278.284				
1938.20	0.063	6.174	1.769	7.943	417.539	278.258				
1912.80	0.064	6.272	1.730	8.002	409.596	278.233				
1887.40	0.066	6.468	1.651	8.119	401.594	278.207				
1836.60	0.069	6,762	1.534	8,296	355.297	278.162				
1811.20	0.069	6.762	1.534	8.296	377.001	278.131				
1785.80	0.070	6.860	1.494	8.354	368.705	278.106				
1760.40	0.071	6.958	1.455	8.413	360.351	278.080				
1735.00	0.072	7.056	1.416	8.472	351.938	278.055				
1709.60	0.072	7.056	1.416	8.472	343.466	278.030				
1684.20	0.073	7.154	1.377	8.531	334.994	278.004				
1633.40	0.074	7.252	1.338	8.590	317.873	277.953				
1608.00	0.075	7.350	1.298	8.648	309.283	277.928				
1582.60	0.076	7.448	1.259	8.707	300.635	277.903				
1557.20	0.076	7.448	1.259	8.707	291.928	277.877				
1531.80	0.077	7.546	1.220	8.766	283.221	277.852				
1506.40	0.077	7.546	1.220	8.766	274.455	277.826				
1481.00	0.078	7.644	1.181	8.825	265.689	277.801				
1430.20	0.079	7.742	1.142	8.884	247.980	277.750				
1404.80	0.080	7.840	1.002	8.842	239.096	277.725				
1380.00	0.000	0.000	4.238	4.238	230.254	277.700				
1354.60	0.000	0.000	4.238	4.238	226.016	277.675				
1329.20	0.000	0.000	4.238	4.238	221.778	277.649				
1303.80	0.000	0.000	4.238	4.238	217.540	277.624				
1278.40	0.000	0.000	4.238	4.238	213.302	277.598				
1223.60	0.000	0.000	4.238	4.238	204.826	277.548				
1202.20	0.000	0.000	4.238	4.238	200.588	277.522				
1176.80	0.000	0.000	4.238	4.238	196.350	277.497				
1151.40	0.000	0.000	4.238	4.238	192.112	277.471				
1126.00	0.000	0.000	4.238	4.238	187.874	277.446				
1100.60	0.000	0.000	4.238	4.238	183.636	277.421				
1075.20	0.000	0.000	4.238	4.238	175.160	277.395				
1049.80	0.000	0.000	4.238	4.238	170.922	277.344				
999.00	0.000	0.000	4.238	4.238	166.684	277.319				
973.60	0.000	0.000	4.238	4.238	162.446	277.294				
948.20	0.000	0.000	4.238	4.238	158.208	277.268				
922.80	0.000	0.000	4.238	4.238	153.970	277.243				
897.40	0.000	0.000	4.238	4.238	149.732	277.217				
8/2.00	0.000	0.000	4.238	4.238	145.494	277.192				
821.20	0.000	0.000	4.238	4.238	137.018	277.141				
795.80	0.000	0.000	4.238	4.238	132.780	277.116				
770.40	0.000	0.000	4.238	4.238	128.542	277.090				
745.00	0.000	0.000	4.238	4.238	124.304	277.065				
719.60	0.000	0.000	4.238	4.238	120.066	277.040				
694.20	0.000	0.000	4.238	4.238	115.828	277.014				
643.40	0.000	0.000	4.238	4.238	111.590	276.989				
045.40 618.00	0.000	0.000	4.238	4.238	107.352	270.903				
592.60	0.000	0.000	4.238	4.238	98.876	276.913				
567.20	0.000	0.000	4.238	4.238	94.638	276.887				
541.80	0.000	0.000	4.238	4.238	90.400	276.862				
516.40	0.000	0.000	4.238	4.238	86.162	276.836				

491.00	0.000	0.000	4.238	4.238	81.924	276.811
465.60	0.000	0.000	4.238	4.238	77.686	276.786
440.20	0.000	0.000	4.238	4.238	73.448	276.760
414.80	0.000	0.000	4.238	4.238	69.210	276.735
389.40	0.000	0.000	4.238	4.238	64.972	276.709
364.00	0.000	0.000	4.238	4.238	60.734	276.684
338.60	0.000	0.000	4.238	4.238	56.496	276.659
313.20	0.000	0.000	4.238	4.238	52.258	276.633
287.80	0.000	0.000	4.238	4.238	48.020	276.608
262.40	0.000	0.000	4.238	4.238	43.782	276.582
237.00	0.000	0.000	4.238	4.238	39.544	276.557
211.60	0.000	0.000	4.238	4.238	35.306	276.532
186.20	0.000	0.000	4.238	4.238	31.068	276.506
160.80	0.000	0.000	4.238	4.238	26.830	276.481
135.40	0.000	0.000	4.238	4.238	22.592	276.455
110.00	0.000	0.000	4.238	4.238	18.354	276.430
84.60	0.000	0.000	4.238	4.238	14.116	276.405
59.20	0.000	0.000	4.238	4.238	9.878	276.379
33.80	0.000	0.000	4.238	4.238	5.640	276.354
8.40	0.000	0.000	1.402	1.402	1.402	276.328
0.00	0.000	0.000	0.000	0.000	0.000	0.000

Project: Venetian, Uxbridge Engineer: Location: 241 Reach St, Uxbridge Date: March 7/19

If you have any Questions or Concerns Contact us at info@stormchambers.com

Inclue Perimeter Stone in Calculations

Choose a Chamber Model	SC-44	-
Choose a Units System	Metric	-
Total Number of Chambers	99	1
Void Space in Stone (%)	40%	
Elevation of Stone Base (meters)	278.7	
Stone Above Chambers (mm)	650	
Stone Below Chambers (mm)	0	
Space Between Rows (mm)	230	1
Total Number of Rows	36	1

StormChamber Staged Storage										
	Incremental Single	Incremental Total		In an an and all the Rest						
Height of	Chamber (cubic	Chambers (cubic	Incremental Stone	Incremental Ch & St	Cumulative Ch & St	Elevation (motors)				
System (mm)	meters)	meters)	(cubic meters)	(cubic meters)	(cubic meters)	(meters)				
1767.00	0.000	0.000	4.774	4.774	508.925	280.467				
1741.60	0.000	0.000	4.774	4.774	504.151	280.442				
1/16.20	0.000	0.000	4.774	4.774	499.377	280.416				
1665.40	0.000	0.000	4.774	4.774	494.005	280.391				
1640.00	0.000	0.000	4.774	4.774	485.055	280.340				
1614.60	0.000	0.000	4.774	4.774	480.281	280.315				
1589.20	0.000	0.000	4.774	4.774	475.507	280.289				
1563.80	0.000	0.000	4.774	4.774	470.733	280.264				
1538.40	0.000	0.000	4.774	4.774	465.959	280.238				
1513.00	0.000	0.000	4.774	4.774	461.185	280.213				
1487.60	0.000	0.000	4.774	4.774	456.411	280.188				
1462.20	0.000	0.000	4.774	4.774	451.637	280.162				
1436.80	0.000	0.000	4.774	4.774	446.863	280.137				
1411.40	0.000	0.000	4.774	4.774	442.089	280.111				
1360.00	0.000	0.000	4.774	4.774	437.515	280.080				
1335.20	0.000	0.000	4.774	4.774	432.341	280.001				
1309.80	0.000	0.000	4.774	4.774	422,993	280.010				
1284.40	0.000	0.000	4.774	4.774	418.219	279.984				
1259.00	0.000	0.000	4.774	4.774	413.445	279.959				
1233.60	0.000	0.000	4.774	4.774	408.671	279.934				
1208.20	0.000	0.000	4.774	4.774	403.897	279.908				
1182.80	0.000	0.000	4.774	4.774	399.123	279.883				
1157.40	0.000	0.000	4.774	4.774	394.349	279.857				
1132.00	0.000	0.000	2.819	2.819	389.575	279.832				
1117.00	0.009	0.891	4.420	5.311	386.756	279.817				
1091.60	0.021	2.079	3.945	6.024	381.445	279.792				
1066.20	0.028	2.772	3.667	6.439	375.421	279.766				
1040.80	0.033	3.267	3.469	6./36	368.982	279.741				
1015.40	0.038	3.762	3.2/1	7.033	362.246	279.715				
964.60	0.042	4.138	2 955	7 509	347 942	279.665				
939.20	0.049	4.851	2.836	7.687	340.433	279.639				
913.80	0.052	5.148	2.717	7.865	332.746	279.614				
888.40	0.055	5.445	2.598	8.043	324.881	279.588				
863.00	0.057	5.643	2.519	8.162	316.838	279.563				
837.60	0.060	5.940	2.400	8.340	308.676	279.538				
812.20	0.062	6.138	2.321	8.459	300.336	279.512				
786.80	0.064	6.336	2.242	8.578	291.877	279.487				
761.40	0.066	6.534	2.163	8.697	283.299	279.461				
736.00	0.067	6.633	2.123	8.756	274.602	279.436				
/10.60	0.069	6.831	2.044	8.8/5	265.846	279.411				
659.80	0.070	7.029	1 965	8 994	2/18/037	279.360				
634.40	0.071	7.023	1.905	9 112	248.037	279 334				
609.00	0.074	7.326	1.846	9.172	229.931	279.309				
583.60	0.075	7.425	1.806	9.231	220.759	279.284				
558.20	0.076	7.524	1.767	9.291	211.528	279.258				
532.80	0.076	7.524	1.767	9.291	202.237	279.233				
507.40	0.077	7.623	1.727	9.350	192.946	279.207				
482.00	0.078	7.722	1.687	9.409	183.596	279.182				
456.60	0.078	7.722	1.687	9.409	174.187	279.157				
431.20	0.079	7.821	1.648	9.469	164.778	279.131				
405.80	0.079	7.821	1.048	9.469	155.309	279.106				
380.40	0.080	7.920	1.608	9.528	145.840	279.080				
329.60	0.080	8,010	1.500	9.520	126 784	279.035				
304.20	0,081	8,019	1.569	9,588	117.196	279,004				
278.80	0.082	8.118	1.529	9.647	107.608	278.979				
253.40	0.082	8.118	1.529	9.647	97.961	278.953				
228.00	0.083	8.217	1.489	9.706	88.314	278.928				
202.60	0.083	8.217	1.489	9.706	78.608	278.903				
177.20	0.084	8.316	1.450	9.766	68.902	278.877				
151.80	0.084	8.316	1.450	9.766	59.136	278.852				
126.40	0.085	8.415	1.410	9.825	49.370	278.826				
101.00	0.086	8.514	1.371	9.885	39.545	278.801				
75.60	0.086	8.514	1.371	9.885	29.660	278.776				
50.20	0.087	8.613	1.331	9.944	19.775	278.750				
24.80	0.087	8.013	1.218	9.831	9.831	2/8./25				
0.00	0.000	0.000	0.000	0.000	0.000	0.000				

17:386 241 Reach St. Uxbridge Quantity Control Analysis

5 YEAR STORM VERTICAL ORIFICE PLATE

Req. Flow	0.221	m ³ /s	
H _{max}	278.55	m	Input
Pipe Invert			Variables
(Orifice #1 Inv)	277.40	m	
C	0.63		
Head	0.99	m	$\Box O = CA_{\bullet} / 2 oh $
Orifice #1 Diameter	318	mm	$\mathbb{Z}^{-\mathbb{C}}$
Q =	(0.630)	(0.079	Į 2 x 9.81 x 0.99 m
Q =	0.221	m³/s	

100 YEAR STORM VERTICAL ORIFICE PLATE

Flow Released through 5 Year control Orfice at 100 Year Ponding Elevation:

H _{max}	279.15	m	
Pipe Invert			
(Orifice #1 Inv)	277.40	m	
Ċ	0.63		
Head	1.59	m	$\Box O = CA \sqrt{2} gh $
Diameter	318 mm		
Q = (0.630	[0.079	[2 x 9.81 x 1.59 m)
Q =	0.280	m³/s	
Required Total Out			
Flow	0.414	m ³ /s	
5 Year Control Orifice			
Flow	0.280	m³/s	
Remaining 100 Year			
Control Orifice Flow	0.134	m³/s	
Orifice #2 Inv	278.60	m	
Head	0.55	m	
Orifice #2 Diameter	287	mm	
Q = (0.630	[0.065	[2x9.81x0.55m)
Q =	0.134	m³/s	

)

APPENDIX E CROSS SECTIONS

