

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

Hydrogeological Assessment to Support Townhome Development at 231, 235, 237, 241, 245 and 249 Durham Road No. 8 (formerly Reach Street), Uxbridge, ON

Palmer Project # 2101801

Prepared For 2452595 Ontario Ltd.

March 11, 2021

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

March 11, 2021

2452595 Ontario Ltd. 220 Duncan Mill Rd. Ste 401 Toronto, ON M3B 3J5

Dear Mr. Bonakdar,

Re: Hydrogeological Assessment to Support Townhome Development at 231, 235, 237, 241, 245 and 249 Durham Road No. 8 (formerly Reach Street), Uxbridge, ON Project #: 2101801

Palmer Environmental Consulting Group Inc. (Palmer) is pleased to submit the attached report describing the results of Palmer's Hydrogeological Assessment and Water Balance Analysis to support the proposed townhome development at 231, 235, 237, 241, 245 and 249 Durham Road No. 8 (formerly Reach Street), in Uxbridge, Ontario.

This report provides the results of the hydrogeological investigation, including lithology and groundwater conditions, infiltration rate measurements, phosphorous budgeting, and the pre-and-post development water budget results in support of development approvals and preliminary design of the site.

Through integration between Palmer's hydrogeology program and the stormwater management design completed by engineers at Sabourin Kimble & Associates Inc. (SKA), infiltration rates have not only been balanced from pre-to-post development but increased by 81% using an innovative LID treatment train approach. This increased infiltration will help support groundwater recharge to the Oak Ridges Moraine Aquifer and support nearby groundwater supported features such as Uxbridge Brook. In addition, the LID features were calculated to decrease phosphorus loading from the site by 39%, exceeding the targets of the Lake Simcoe Protection Plan, and providing a benefit from site development.

We trust that this information meets your current needs. If you have any questions or require further information, please do not hesitate to contact us.

Yours truly, Palmer Environmental Consulting Group Inc.

Bobby Katanchi, M.Sc., P.Geo Senior Hydrogeologist

Palmer...

Table of Contents

Letter

1.	Intro	duction and Background	1
	1.1	Scope of Work	1
2.	Exist	ing Conditions	3
	2.1	Regional Conditions	
	2.1	2.1.1 Physiography and Geology	
		2.1.2 Drainage	
		2.1.3 Hydrogeological Setting	
	2.2	Water Supply	4
	2.3	Local Conditions	
		2.3.1 Drilling and Monitoring Well Installations	
		2.3.2 Surficial Geology	7
3.	Hydr	ogeological Investigation	.9
	3.1	Groundwater Level and Flow	9
	3.2	Hydraulic Conductivity	12
		3.2.1 Grain Size Analysis	12
	3.3	Infiltration Rate	
		3.3.1 Empirical Relationship	
		3.3.2 Field Testing	
		3.3.2.1 Guelph Permeameter3.3.2.2 In-Well Infiltration Testing	
		3.3.3 Summary of Infiltration Results	
	3.4	Groundwater Quality	
	3.5	Phosphorous Budget	
	3.6	Pre-Development Water Budget	
		3.6.1 Methodology	
		3.6.2 Results	24
	3.7	Post-Development Water Budget (Without Mitigation)	24
		3.7.1 Methodology	
		3.7.2 Results	
	3.8	Post-Development Water Budget (With Mitigation)	
		3.8.1 Methodology	
		3.8.2 Results	25
4.	Hydr	ogeological Considerations for Construction	29
	4.1	Source Water Protection	29
	4.2	Short Term Dewatering	29
	4.3	Long Term Drainage	29

Palmer...

5.	Summary and Conclusions	30
6.	Statement of Limitations	32
7.	Certification	33
8.	References	34

List of Figures

Figure 1. Site Map	2
Figure 2. MECP Water Well Records (WWR)	
Figure 3. Surficial Geology	
Figure 4. Depth to Groundwater	
Figure 5. Groundwater Flow	11
Figure 6. Infiltration Test Locations	14
Figure 7. MW-2 In-Well Infiltration Response Curves	17
Figure 8. MW-3 In-Well Infiltration Response Curves	18
Figure 9. MW-6 In-Well Infiltration Response Curves	19

List of Tables

Table 1. MECP Water Well Record Summary	4
Table 2. Borehole and Monitoring Well Installation Details	7
Table 3. Groundwater Levels from Monitoring Wells	9
Table 4. Private Well Groundwater Levels	12
Table 5. Summary Table of Calculated Hydraulic Conductivity Values	12
Table 6. Summary of Infiltration Test Locations	15
Table 7. Summary of Guelph Permeameter Infiltration Testing Results	15
Table 8. Summary of In-Well Infiltration Testing Results	16
Table 9. Summary of Infiltration Results	20
Table 10. Groundwater Quality Results	
Table 11. Summary of Infiltration Factors	23
Table 12. Summary of Annual Water Surplus Values by Zone	24
Table 13. Summary of Pre-Development Water Balance Results	26
Table 14. Summary of Post-Development Water Balance Results (no LID)	
Table 15. Summary of Post-Development Water Balance Results (with LID)	27
Table 16. Summary of Pre-to-Post Development Water Balance Results	28

List of Appendices

Appendix A. Site Plan Drawing: Scheme E4 (Hunt Design Associates Inc., 2017)

Palmer.

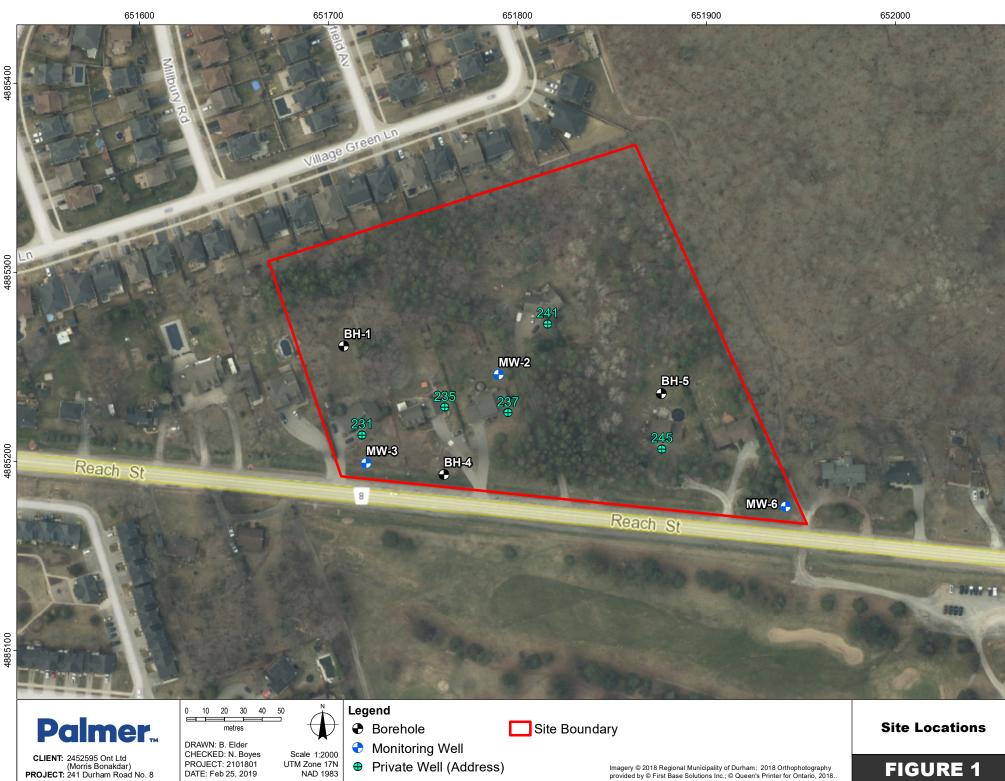
Appendix B. Borehole Logs (Sirati & Partners Consultants Ltd., 2018)

- Appendix C. LID Design Plan (Sabourin Kimble & Associates, 2020) Appendix C1. LID Design Calculations (SKA, 2021) Appendix C2. Proposed LID Facilities (SKA, 2021)
- Appendix D. Source Water Protection (South Georgian Bay-Lake Simcoe Source Protection Committee, 2015)
 Appendix D1. Uxbridge – Wellhead Protection Areas
 Appendix D2. Uxbridge – Significant Groundwater Recharge Areas
 Appendix D3. Uxbridge – Highly Vulnerable Aquifer
- Appendix E. MECP Phosphorus Budget Tool Summary (V2.0 Release Update March 30, 2012)
- Appendix F. Certificate of Analysis (ALS, 2018)

1. Introduction and Background

Palmer Environmental Consulting Group Inc. (Palmer) was retained by 2452595 Ontario Ltd. to complete a hydrogeological assessment to support townhome development at 231, 235, 237, 241, 245 and 249 Durham Road No. 8 (formerly Reach Street), in Uxbridge, ON (hereby known as the "site" or "study area"). The property is approximately 3.57 ha in size, and presently consists of single family rural residential homes and two woodlot areas (Figure 1).

The existing ground surface elevation ranges from approximately 279 meters above sea level (masl) on the north-western portion of the site to approximately 288 masl on the south-eastern portion of the site, near the top of the bank. Based on the Site Plan by Hunt Design Associates Inc. (Hunt, 2019), the proposed land development includes 62 townhome units consisting of a mix of bungalow, street and rear lane townhouses divided within 11 "Blocks", and one roadway. It is our understanding that the proposed units will be built with one (1) level of basement (Appendix A).


1.1 Scope of Work

Palmer's scope of work for the hydrogeological assessment includes the following tasks:

- Characterize the hydrogeological conditions of the site, including groundwater elevation and groundwater flow;
- Measure the hydraulic conductivity of the soils using single well response tests (i.e., slug tests) completed at select monitoring well locations;
- Assess groundwater quality;
- Complete percolation tests to determine the infiltration rate of the native soils at the site, and assess the suitability for the proposed Low Impact Development (LID) strategies;
- Conduct regular groundwater level monitoring from monitoring wells and private residential wells;
- Complete a pre- and post-development phosphorous budget to satisfy the requirements of the Lake Simcoe Protection Plan (LSPP);
- Complete a pre- and post-development water budget analysis to assess changes to infiltration and runoff;
- Assess the site's location in relation to Wellhead Protection Areas (WHPAs) and conformance with the South Georgian Bay Lake Simcoe Source Protection Plan; and,
- Prepare a Hydrogeological Assessment Report.

Information from the following sources were reviewed as part of the study:

- Sirati & Partners Consultants Ltd, 2018. Preliminary Geotechnical Report, Proposed New Development 241 Durham Road No. 8 (Formerly Reach Street), Uxbridge, ON;
- Available geology, hydrogeology, and physiography mapping (e.g., Ontario Geological Survey (OGS) Surficial Geology Mapping);
- Ontario Ministry of Municipal Affairs and Housing (OMMAH) Supplementary Guidelines to the Ontario Building Code 1997. SG-6 Percolation Time and Soil Descriptions;
- Ministry of the Environment Conservation and Parks (MECP) Water Well Records database;
- MECP Phosphorus Budget Tool;
- MECP Source Protection Information Atlas; and,
- The South Georgian Bay Lake Simcoe Source Water Protection Plan.

Document Path: C:\Egnyte\Shared\Projects\Active\17052 - Uxbridge - 2452595 Ont Ltd (Morris Bonakdar)\170521 - 241 Durham Road No. 8\Wapping\mxd\170521_Figure1_Sites.mxd

Contains information licensed under the Open Government Licence - Ontario and Canada.

2. Existing Conditions

2.1 Regional Conditions

2.1.1 Physiography and Geology

The site is located within the Peterborough Drumlin Field physiographic region (Chapman and Putnam, 1984), and is located approximately 500 m north of the Oak Ridges Moraine physiographic region. Topography within the Peterborough Drumlin Field is characterized as a network of wide, flat-floored valleys formed by sub-glacial meltwater, with frequent drumlinized relief features. The drumlin field covers an area of approximately 5,000 km² and includes over 3,000 well developed drumlin ridges. These drumlin features are not present near the study area.

The surficial geology is characterized as ice-contact stratified deposits of sand, gravel, and minor silt, clay and till. Although relatively sparse in the study area, the Peterborough Drumlin Field is typically rich with Newmarket Till. Based on a review of the MECP Water Well Records within the study area (**Table 1**), the Newmarket Till is not present at or near surface at the site location.

Bedrock consists of the Blue Mountain Formation, described as interbedded grey-green to dark grey shale and limestone (Armstrong and Dodge, 2007). The depth to bedrock in this area is typically greater than 100 m and will not be encountered during project construction.

2.1.2 Drainage

The site is located within the Uxbridge Brook Watershed. This watershed has a total area of 178 km², and crosses the Regional Municipality of Durham and the Regional Municipality of York. Uxbridge Brook is interpreted to be groundwater support at it's headwaters in the Oak Ridges Moraine (ORM), and generally flows north before discharging to Pefferlaw Brook, approximately 8.5 km south of Lake Simcoe (LSRCA, 1997). Uxbridge Brook is located approximately 750 m south of the project boundary.

The Uxbridge Brook Headwater Wetland Complex encompasses the Uxbridge Brook watercourse, and its limit is located approximately 550 m south of the project boundary. This wetland is a designated Provincially Significant Wetland (PSW), and covers a total area of approximately 159.6 ha. This wetland is defined as significant class 1 and has been assessed to serve a critical ecological function within the Uxbridge Brook Watershed (LSRCA, 1997).

2.1.3 Hydrogeological Setting

Hydrostratigraphic units can be subdivided into two (2) distinct groups based on their capacity to allow groundwater movement. An aquifer is classically defined as a layer of soil that is permeable enough to permit a usable supply of water to be extracted. Conversely, an aquitard is a layer of soil that inhibits groundwater movement due to its low permeability. Within the study area, shallow groundwater flow is influenced by two major hydrostratigraphic units: the Oak Ridges Aquifer Complex (ORAC), and the Newmarket Till Aquitard. Each of these units are described below.

The **Oak Ridges Aquifer Complex (ORAC)** forms a near surface aquifer across most of the moraine. This unit is primarily composed of highly permeable coarse sand and gravel and is capable of yielding sufficient water supply for larger capacity domestic and municipal water wells. Wells screened within the

ORAC indicate intermediate to high transmissivity values ranging from 335 m²/day to 1,771 m²/day (Hunter et al., 1996). Within Uxbridge, transmissivity values of up to 780 m²/day have been reported (Hunter et al., 1996). The ORAC also plays a significant regional role in groundwater recharge due to the high permeability of the unit combined with unconfined hummocky terrain which promotes infiltration.

The *Newmarket Till Aquitard* is a dense sandy silt to silty sand till unit deposited by the Laurentide ice sheet approximately 18,000 - 20,000 years ago. This unit has a low hydraulic conductivity, generally in the range of 10⁻¹¹ to 10⁻⁶ m/sec (Interim Waste Authority, 1994b). The aquitard effectively acts to separate the upper aquifer systems associated with the Oak Ridges Moraine from lower aquifers, including the Thorncliffe Formation and Sunnybrook Diamicton. In some areas, however, tunnel channels aquifers have formed within the Newmarket Till as a result of erosional activity followed by the infilling of ORM sediment. These channels can form a hydraulic connection between the Oak Ridges Moraine and the lower aquifers and are capable of forming high yield aquifers (Sharpe et al., 1996). Groundwater flow within the Newmarket Till is typically in a downwards direction.

2.2 Water Supply

Based on a search of the MECP Water Well Record Database, fifty (50) water well records are located within a 500 m radius of the site (**Figure 2**). Of these wells, thirty-seven (37) are classified for domestic use, one (1) for agricultural use, and the remaining twelve (12) wells are either abandoned, test wells, or not in use. A summary of the MECP Water Well Records is provided in **Table 1**.

Municipal water supply is readily available to the Uxbridge Community. Currently, the community relies on groundwater from three (3) municipal water supply wells (MW5, MW6, and MW7). MW5 and MW7 are located approximately 550 m west of the site, and MW6 is approximately 2 km west. These wells are between 58.2 m and 76.5 m in depth, and obtain water from the Thorncliffe Aquifer Complex (TAC). At MW5 and MW7, the TAC is likely connected to the Oak Ridges Moraine Aquifer through a tunnel channel aquifer within the Newmarket Till aquitard. At MW6, the tunnel channel is absent, such that the TAC is effectively confined in this location (South Georgian Bay-Lake Simcoe Source Protection Committee, 2015). The locations of these wells are shown in **Appendix D**.

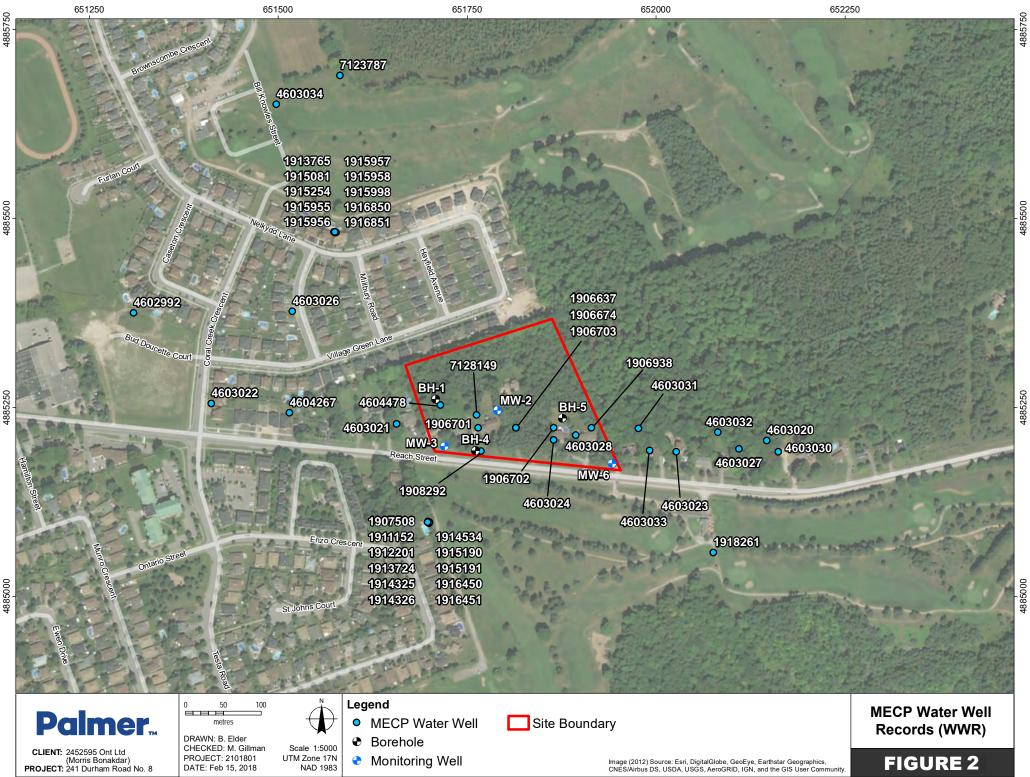

Well ID	Elevation (masl)	Depth (m)	Water Level (mbgs)	Water Use	Water Status	Interpreted Lithology
7123787	N/A	4.57	N/A	N/A	test hole	sand silt
7128149	N/A	N/A	N/A	N/A	N/A	N/A
1906637	281.94	28.35	15.85	Domestic	water supply	sand
1906674	281.94	23.47	9.75	Domestic	water supply	sand
1906701	281.94	25.30	10.06	Domestic	water supply	sand
1906702	281.94	27.74	15.24	Domestic	water supply	sand gravel
1906703	281.94	27.74	12.19	Domestic	water supply	clay
1906938	281.94	24.38	11.58	Domestic	water supply	sand
1907508	N/A	32.31	15.24	Domestic	water supply	clay gravel
1908292	282.85	18.90	10.67	Domestic	water supply	sand
1911152	N/A	31.70	4.57	Domestic	water supply	sand
1912201	N/A	39.01	16.76	Domestic	water supply	N/A
1912336	N/A	15.85	7.62	Domestic	water supply	sand
1912420	N/A	17.37	7.62	Domestic	water supply	clay

Table 1. MECP Water Well Record Summary

Well ID	Elevation (masl)	Depth (m)	Water Level (mbgs)	Water Use	Water Status	Interpreted Lithology
1913724	N/A	25.91	7.62	Domestic	water supply	clay silt
1913765	N/A	N/A	N/A	N/A	abandoned-other	N/A
1914325	N/A	35.36	24.38	Domestic	water supply	gravel
1914326	N/A	35.36	24.38	Domestic	water supply	gravel
1914534	N/A	29.57	9.14	Domestic	water supply	sand
1915081	N/A	21.34	6.10	Domestic	water supply	sand
1915082	N/A	19.20	6.10	Domestic	water supply	sand
4602992	277.37	77.72	5.49	Not Used	test hole	sand gravel clay
4603020	281.94	18.29	15.24	Domestic	water supply	sand
4603021	280.42	31.39	20.42	Domestic	water supply	sand
4603022	281.94	27.74	11.58	Domestic	water supply	N/A
4603023	283.46	35.05	15.24	Domestic	water supply	sand
4603024	283.46	25.91	19.81	Domestic	water supply	sand
4603026	278.89	42.67	9.14	Domestic	water supply	N/A
4603027	281.94	25.91	19.81	Domestic	water supply	sand
4603028	283.46	42.67	24.38	Domestic	water supply	sand
4603030	281.94	34.75	20.42	Domestic	water supply	N/A
4603031	283.46	22.86	16.76	Domestic	water supply	sand gravel
4603032	283.46	39.01	21.95	Domestic	water supply	sand
4603033	283.46	24.99	17.37	Domestic	water supply	sand
4603034	275.84	28.35	7.62	Irrigation	water supply	N/A
4604267	281.94	24.38	6.10	Domestic	water supply	N/A
4604478	281.94	50.29	6.10	Domestic	water supply	clay
1915190	N/A	30.18	3.05	Domestic	water supply	clay
1915191	N/A	19.81	N/A	Domestic	abandoned-supply	clay
1915254	N/A	78.33	7.01	N/A	observation wells	soil
1915955	N/A	92.05	N/A	N/A	abandoned-supply	gravel
1915956	N/A	46.33	N/A	N/A	abandoned-supply	sand gravel
1915957	N/A	49.38	N/A	N/A	observation wells	sand
1915958	N/A	95.10	N/A	N/A	abandoned-supply	clay gravel
1915998	N/A	49.38	4.57	Irrigation	water supply	clay gravel
1916450	N/A	N/A	N/A	N/A	abandoned-supply	N/A
1916451	N/A	35.97	24.38	Domestic	water supply	sand
1916851	N/A	84.43	-*	Not Used	Unknown	sand silt
1916850	N/A	72.24	6.71	Not Used	Unknown	sand silt
1918261	N/A	93.00	62.00	Domestic	water supply	sand silt

*Value provided on drill log is illegible and not reliable.

Document Path: C:\Egnyte\Shared\Projects\Active\17052 - 2452595 Ont Ltd (Morris Bonakdar)\170521 - 241 Durham Road No. 8\Mapping\mxd\170521_Figure3_WWR.mxd

Contains information licensed under the Open Government Licence Ontario and Canada

2.3 Local Conditions

2.3.1 Drilling and Monitoring Well Installations

On January 26, 2018, six (6) boreholes were drilled within the site area under the supervision of Sirati & Partners Consultants Ltd. (SPCL) personnel. The locations of the boreholes are shown on **Figure 1**. Boreholes were drilled using continuous flight auger methods to depths ranging from 6.7 to 8.2 metres below ground surface (mbgs). Samples were collected at regular intervals using a 51 mm O.D. split-barrel sampler. Three of the boreholes (MW2, MW3, and MW6) were completed as monitoring wells using 51 mm diameter PVC and a 1.5 m length of screen. Details of the boreholes and monitoring wells installations are provided in **Table 2**. Completed borehole logs by SPCL are provided in **Appendix B**.

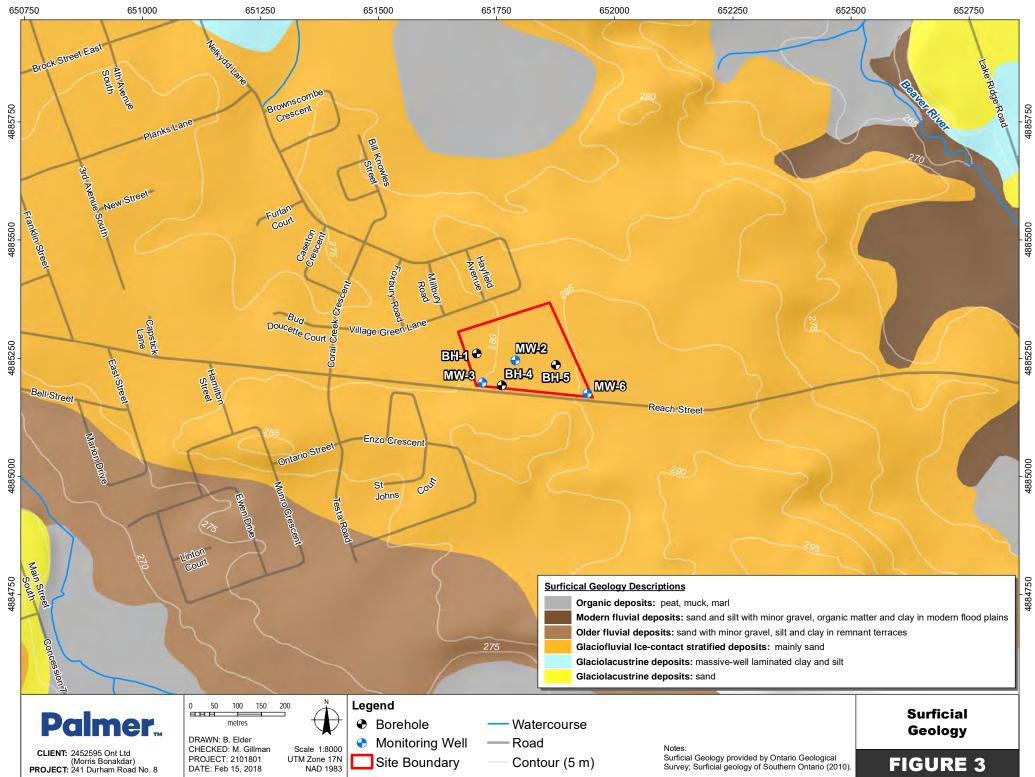

BH/MW ID	H/MW ID Surface Elevation (masl)		Screened Interval (mbgs)	Screened Geology	
BH1	BH1 282.5 8.2		n/a – borehole only	Sand and sandy silt	
BH2/MW2	283.5	6.7	4.7 to 6.7	Sandy silt	
BH3/MW3	282.8	6.7	4.7 to 6.7	Sand and sandy silt	
BH4	284.5	6.7	n/a – borehole only	Sand and sandy silt	
BH5	286.9	6.7	n/a – borehole only	Sand	
BH6/MW6	6/MW6 289.0 6.7		4.7 – 6.7	Sandy silt	

Table 2. Borehole and Monitoring Well Installation Details

2.3.2 Surficial Geology

Borehole drilling by SPCL identified an overlying layer of topsoil and/or asphalt across the site. Underlying the topsoil or asphalt is a layer of fill materials consisting of sand to silty sands, which extends to depths up to 1.8 mbgs. Below the fill material, native overburden materials consisting of sand and sandy silt of the ORAC were encountered to depths of at least 8.2 mbgs, and the bottom of the unit was not penetrated during the drilling investigation (i.e., the Newmarket Till aquitard was not encountered). The SPCL borehole logs are provided in **Appendix B**.

Soil conditions encountered during drilling investigations are consistent with the soil descriptions reported in the MECP Water Well Records (**Table 1**) and with the Ontario Geological Survey (OGS) surficial geology mapping of the site (**Figure 3**). Glaciofluvial ice-contact stratified deposits made up of mostly sand was found in the SPCL borehole logs as well as MECP Water Well Records. This is representative of the ORAC, and based on MECP Water Well Records, is expected to have a thickness of up to 30 m in this area below which the Newmarket Till would be expected. A mixture of non-cohesive sands and silts were noted in thirty-four (34) of the forty-one (41) MECP Water Well Records with soil descriptions listed in **Table 1**.

Document Path: C:\Egnyte\Shared\Projects\Active\17052 - 2452595 Ont Ltd (Morris Bonakdar)\170521 - 241 Durham Road No. 8\Mapping\mxd\170521_Figure2_SurfGeo.mxd

Contains information licensed under the Open Government Licence - Ontario and Canada.

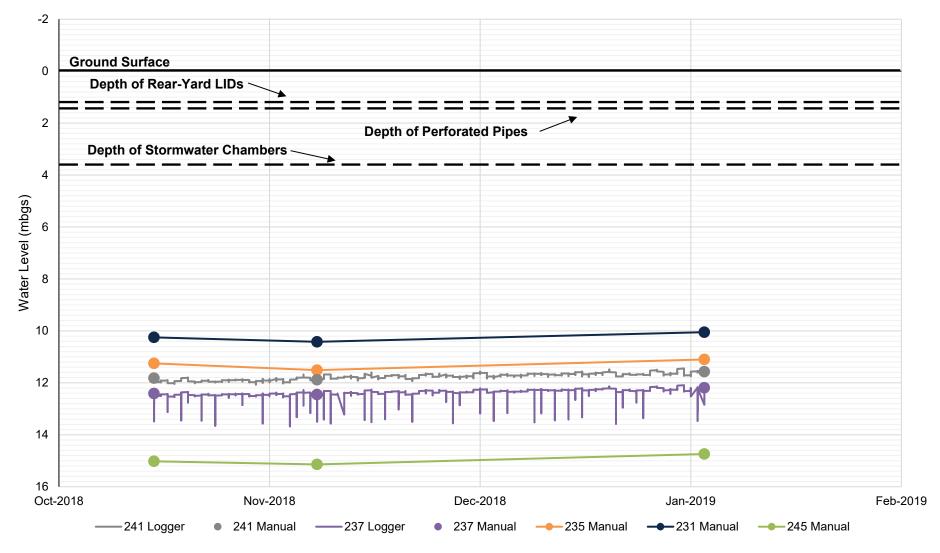
3. Hydrogeological Investigation

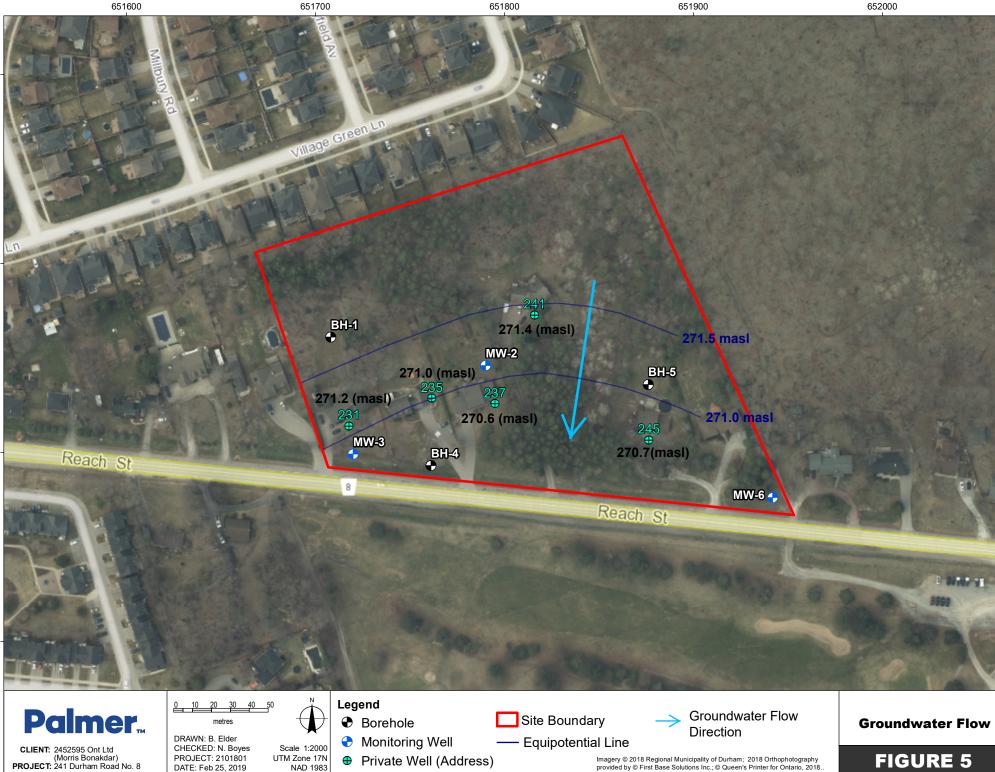
3.1 Groundwater Level and Flow

Water levels at monitoring wells MW2, MW3, and MW6 were measured by Palmer personnel on February 2, 2018, October 15, 2018, November 8, 2018, and January 4, 2019. The monitoring wells were observed as "dry" during each site visit, indicating that the groundwater elevation was lower than 6.7 meters below ground surface (mbgs). A summary of the water level measurements collected during the site visits is provided in **Table 3**.

		Ground	Water Level								
Monitoring	Stratigraphic	Surface	masl	mbgs	masl	mbgs	masl	mbgs	masl	mbgs	
Well	Unit	Elevation (masl)	Feb 2, 2018		Oct 15, 2018		Nov 8, 2018		Jan 4, 2019		
MW2	Sandy silt	283.5	<276.8	>6.7	<276.8	>6.7	<276.8	>6.7	<276.8	>6.7	
MW3	Sand and sandy silt	282.8	<276.1	>6.7	<276.1	>6.7	<276.1	>6.7	<276.1	>6.7	
MW6	Sandy silt	289.0	<282.3	>6.7	<282.3	>6.7	<282.3	>6.7	<282.3	>6.7	

Table 3. Groundwater Levels from Monitoring Wells


Groundwater level monitoring was expanded to include the five private wells located within the site boundary to estimate the depth to the water table (231, 235, 237, 241, and 245 Durham Road). Water levels from these wells were measured by Palmer personnel on October 15, 2018, November 8, 2018 and January 4, 2019 using a combination of automatic data loggers and manual measurements. Data loggers were installed at 237 and 241 Durham Road to provide continuous water level data. Manual water level monitoring results are summarized in **Table 4**. The water table ranged between 10.05 mbgs (231 Durham Road) and 15.14 mbgs (245 Durham Road). Over the course of monitoring, the water table demonstrated very little fluctuation, ranging from 0.26 m at 237 Durham Road to 0.41 m at 235 Durham Road (**Figure 4**). This suggests that the groundwater levels are relatively stable, which is a result of the strong recharge conditions at the site.


Figure 4 also presents the depth of the proposed Low Impact Development (LID) features for the site, relative to the water table. The LID features are further described in Section 3.8 and in **Appendix C**, but it is clear from the groundwater monitoring that the LIDs will be at least 6 m above the water table.

The groundwater flow direction can be estimated using the groundwater elevations obtained from the monitoring events displayed in **Table 4**. Groundwater flow at this site is directed to the south towards Uxbridge Brook (**Figure 5**).

Document Path: C:\Egnyte\Shared\Projects\Active\17052 - Uxbridge - 2452595 Ont Ltd (Morris Bonakdar)\170521 - 241 Durham Road No. 8\Mapping\mxd\170521_Figure1_Sites.mxd

Contains information licensed under the Open Government Licence - Ontario and Canada.

	Well			October	15, 2018	Novembe	er 8, 2018	January	4, 2019
Private Well Address	Stick Up	Well Depth (m)	Elevation (m)	Water Lev	/el (mbgs)	Water Lev	vel (mbgs)	Water Lev	vel (mbgs)
	(m)	(11)	(11)	mbgs	masl	mbgs	masl	mbgs	masl
231 Durham Road	0.16	50.3	281.5	10.25	271.3	10.42	271.1	10.05	271.5
235 Durham Road	0.62	26.2	282.3	11.25	271.0	11.51	271.7	11.10	271.2
237 Durham Road	0.16	27.7	283.0	12.41	270.6	12.45	270.6	12.19	270.8
241 Durham Road	0.36	-*	283.3	11.82	271.4	11.88	271.4	11.57	271.7
245 Durham Road	0	25.9	285.7	15.02	270.6	15.14	270.6	14.74	271.0

Table 4. Private Well Groundwater Levels

Dalmer.

*241 Durham Road Well Depth not available on MECP well database

3.2 Hydraulic Conductivity

3.2.1 Grain Size Analysis

As single well response tests (i.e., slug tests) could not be completed due to insufficient water present within the monitoring wells, the hydraulic conductivity of the soils was estimated using grain size distribution curves completed by SPCL (**Appendix B**). The grain size analysis was completed using the Hazen Method, which is typically suited for relatively permeable sandy soils by incorporating the 10% "finer than" grain size data (Hazen, 1892).

This analysis incorporated the soil samples collected at shallow depths (2.5 mbgs) to better represent the surficial soils at the site. Therefore, the grain size distribution for the sandy silt sample collected at 8.2 mbgs from BH1 was omitted from the analysis as it is understood that the excavations for development will not extend to this depth.

The calculated hydraulic conductivities values based on this method are summarized in **Table 5**. The estimated hydraulic conductivity (k value) of the sand collected from BH1 is approximately 3.6×10^{-7} m/sec, and the k value of the sand collected from BH3 is approximately 7.6×10^{-5} m/sec. The lower k value at BH1 is due to the higher percentage of fine-grained silts and clays in the sample. The geometric mean k value is approximately 5.2×10^{-6} m/sec.

Monitoring Well	Method of Analysis	Geology	Hydraulic Conductivity (m/s)	Geometric Mean Hydraulic Conductivity (m/s)
BH1	Hazen Method		3.6x10 ⁻⁷	5.2x10 ⁻⁶
BH3	Hazen Method	Sand	7.6x10 ⁻⁵	5.2×10

Table 5. Summary Table of Calculated Hydraulic Conductivity Values

Palmer...

3.3 Infiltration Rate

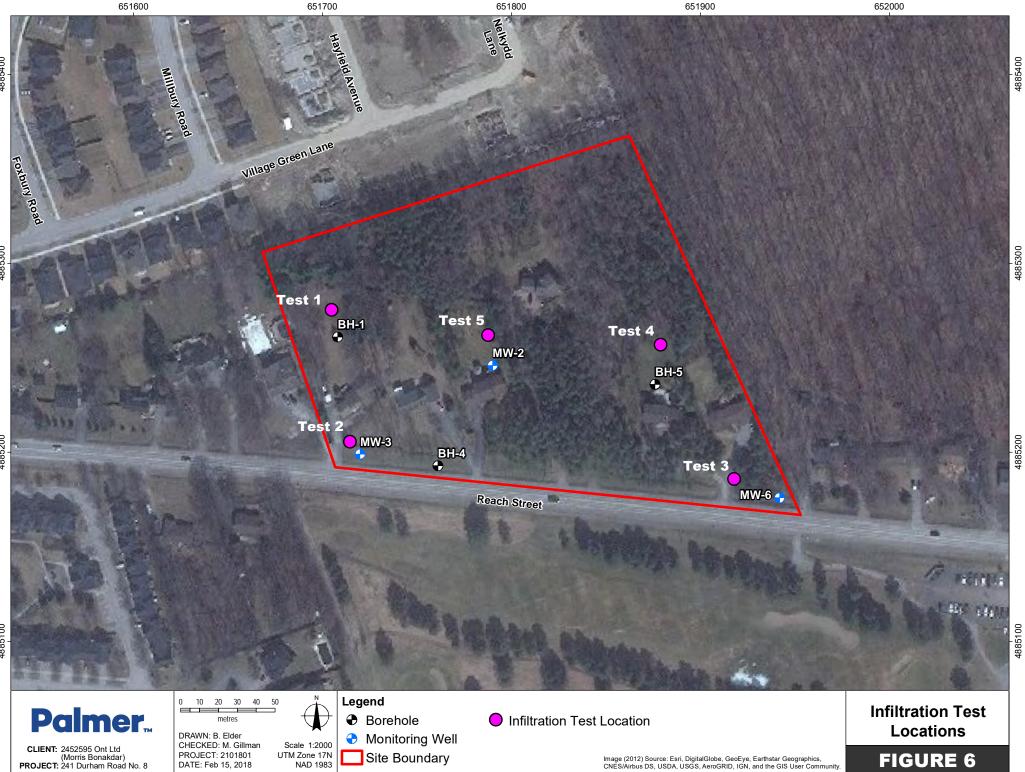
3.3.1 Empirical Relationship

An estimate of the infiltration rate for the study area was produced based on accepted literature values from the Ontario Ministry of Municipal Affairs and Housing (OMMAH) Supplementary Guidelines to the Ontario Building Code 1997, and provided in the Low Impact Development Stormwater Management Planning and Design Guide, **Appendix C** (TRCA/CVC, 2010). The empirically derived relationship is as follows:

 $K = 6x10^{-11}I^{3.7363}$

Where: K = hydraulic conductivity (cm/sec) *I* = infiltration rate (mm/hr).

Based on the geometric mean hydraulic conductivity value of 5.2×10^{-6} m/s, the resulting infiltration rate is expected to be approximately 72 mm/hour. This value indicates the native soils at the proposed infiltration locations are suitable to infiltrate water at the site, particularly given the deep water table.


3.3.2 Field Testing

3.3.2.1 Guelph Permeameter

Site specific infiltration rates of the shallow unsaturated soils at the site were determined using a Guelph Permeameter during a site visit by Palmer personnel on May 4, 2018. Five (5) test locations (Test 1 – Test 5) were selected on the site near existing boreholes and monitoring wells, including BH-1, MW-2, MW-3, BH-5, and MW-6 (**Figure 6**).

Infiltration testing with the Guelph Permeameter (GP) was conducted between depths of between 0.71 and 0.97 mbgs. This method involves measuring the steady state rate of percolation within a 2-3/8" diameter auger hole while maintaining a constant hydraulic head pressure (H) within the GP water reservoir (Reynolds and Elrick, 1986). Once the head pressure is applied, the rate of fall within the reservoir is monitored until a steady state of change (r) is achieved. This value is used to determine the field saturated hydraulic conductivity (K_{fs}) by applying it to the Reynolds and Elrick (1985) equations. The value of K_{fs} can then be applied to the OMMAH equation described above to calculate the rate of infiltration within the surficial soils.

Two single head infiltration tests were completed at each test location (SH-1 and SH-2). Prior to testing, the surficial soils were dug away to approximately 0.3 m below ground surface (mbgs). A riverside auger was then used to excavate the test pit to the correct testing depths, and a description of the soils was recorded. A summary of the infiltration test results, including the depths of the tests and soil descriptions, is provided in **Table 6**. Testing employed the combined reservoir technique to optimize results for more permeable materials.

Document Path: C:\Egnyte\Shared\Projects\Active\17052 - 2452595 Ont Ltd (Morris Bonakdar)\170521 - 241 Durham Road No. 8\Mapping\mxd\170521_Figure1_Sites.mxd

Contains information licensed under the Open Government Licence - Ontario and Canada.

Test 5 (MW-2)

241, 245 and 249 Durham Road No. 8 (formerly Reach Street), Uxbridge, ON										
Table 6. Summary of Infiltration Test Locations										
Infiltration Test ID Borehole/ Monitoring Well Depth of Test (mbgs) Soil Descriptions										
Test 1 (BH-1)	MW-3	0 – 0.48 0.48 – 0.61 0.61 – 0.71	Sandy silt, trace organics, trace clay, dark brown, moist Sandy silt, some sand, light brown, moist Fine to medium sand and silt							
Test 2 (MW-3)	BH-1	0 - 0.36 0.36 - 0.51 0.51 - 0.66 0.66 - 0.79 0.79 - 0.91	Topsoil, brown, moist Silt and clay, moist Silty clay with some sand Silty sand, some clay Sand, some silt							
Test 3 (MW-6)	MW-6	0 – 0.36 0.36 – 0.61 0.61 – 0.97	Fill Silty sand, brown, moist Sand, brown, moist							
Test 4 (BH-5)	BH-5	0 – 0.25 0.25 – 0.41 0.41 – 0.81	Topsoil, organics Silty sand, moist Sand, moist							
		0 – 0.18	Topsoil							

Silty sand with gravel (fill)

Sandy silt, moist Sand, moist

Silt and some gravel, grey layer (fill)

Palmer

Field saturated hydraulic conductivity (K_{fs}) values were then calculated using the Guelph Permeameter Ksat Calculator (2012) for the single head, combined reservoirs method. Using this method, the geometric mean K_{fs} value of the sand and sandy silt ORAC deposits is approximately $5.5x10^{-6}$ m/sec, with values ranging from $1.9x10^{-6}$ m/sec to $1.5x10^{-5}$ m/sec (**Table 7**). This is consistent with the geometric mean k value calculated using the Hazen method, which computed a value of $5.2x10^{-6}$ m/sec (**Section 3.2.1**).

0.18 - 0.33

0.33 - 0.460.46 - 0.64

0.64 - 0.91

MW-2

Infiltration rates were estimated using the empirical relationship described in **Section 3.3.1**. Infiltration rates ranged between 55 mm/hr (SH-1 near BH-1) to 96 mm/hr (SH-2 near MW-6), and averaged approximately 73 mm/hr. This is consistent with the infiltration rate calculated using the grain size analysis and empirical relationship, which was approximately 72 mm/hr.

Infiltration Test ID	Test Number	H (m)	R (cm/min)	K _{fs} (m/sec)	Infiltration Rate (mm/hr)
	SH-1	0.05	1.8	5.7x10 ⁻⁶	74
Test 1 (BH-1)	SH-2	0.10	2.4	5.2x10 ⁻⁶	72
Test 2 (NAVA/ 2)	SH-1	0.05	0.6	1.9x10 ⁻⁶	55
Test 2 (MW-3)	SH-2	0.10	1.2	3.5x10 ⁻⁶	65
Toot 2 (MIM/ 6)	SH-1	0.05	3.6	1.1x10 ⁻⁵	89
Test 3 (MW-6)	SH-2	0.10	6.9	1.5x10⁻⁵	96
Test 4 (DU 5)	SH-1	0.05	1.2	3.8x10 ⁻⁶	66
Test 4 (BH-5)	SH-2	0.10	3.0	6.5x10 ⁻⁶	76
	SH-1	0.05	1.8	5.7x10 ⁻⁶	74
Test 5 (MW-2)	SH-2	0.10	2.4	5.2x10 ⁻⁶	72
	Geome	5.5x10 ⁻⁶	73		

Table 7. Summary of Guelph Permeameter Infiltration Testing Results

Palmer.

3.3.2.2 In-Well Infiltration Testing

In-well infiltration testing was completed by Palmer personnel on July 3, 2018 at three (3) dry monitoring well locations on site, MW-2, MW-3, and MW-6 (**Figure 6**). In-well infiltration testing allowed Palmer to collect infiltration data at depths of between 4.7 and 6.7 mbgs, which is much deeper than what is possible using the Guelph Permeameter method. This method is consistent with industry accepted standard practises for determining infiltration rates of soils. The methodology is based on ASTM International, 2018, Standard Test Method for Field Measurement of Hydraulic Conductivity Using Borehole Infiltration.

The monitoring wells used for the in-well infiltration testing were screened within unsaturated soils. This conclusion was confirmed through regular water level monitoring which indicated the wells were dry during all monitoring events (**Table 3**). The deep water table measured at the private wells of between 10.05 mbgs (231 Durham Road) and 15.14 mbgs (245 Durham Road) further confirm that the monitoring wells would be continuously dry during the year.

A data logger was installed within each monitoring well to record water levels at a 2-second frequency. Two initial infiltration tests were completed at each well by inserting 5-gallons of water and measuring the subsequent change in hydraulic head. This was done to measure the dry well infiltration response. Following these two tests, water was added to each monitoring well at a constant rate for approximately 45 mins to ensure that the sand pack around each monitoring well location was field saturated. The constant influx of water was then stopped, and the receding hydraulic head response was measured (**Figures 7, 8, & 9**), yielding the wet well infiltration rate.

Field saturated hydraulic conductivity (K_{fs}) values were calculated using the displacement-time data analyzed using the Hvorslev (1951) method for unconfined aquifers, modelled using AqtesolvTM software. Using this method, the geometric mean calculated K_{fs} value of the sand and sandy silt ORAC deposits is approximately 4.6x10⁻⁶ m/sec, with values ranging from 9.3x10⁻⁶ m/sec to 3.1x10⁻⁶ m/sec (**Table 8**). This is consistent with the geometric mean hydraulic conductivity (**Section 3.2.1**), as well as the values calculated using the Guelph Permeameter method (**Section 3.3.2.1**).

Infiltration rates were estimated using the empirical relationship described in **Section 3.3.1**. Infiltration rates ranged from 63 mm/hr (MW-3) to 84 mm/hr (MW-6), with a geometric mean of approximately 69 mm/hr (**Table 8**). This is consistent with the infiltration rates calculated using the other methods.

Well ID	K _{fs} (m/sec)	Infiltration Rate (mm/hr)
MW-2	3.3x10⁻ ⁶	64
MW-3	3.1x10⁻ ⁶	63
MW-6	9.2x10 ⁻⁶	84
Geometric Mean (m/sec)	4.6x10⁻ ⁶	69

Table 8. Summary of In-Well Infiltration Testing Results

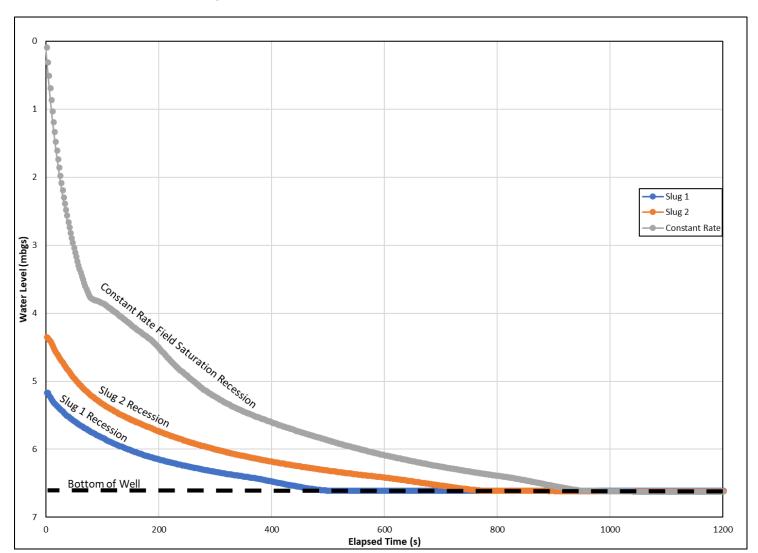


Figure 7. MW-2 In-Well Infiltration Response Curves

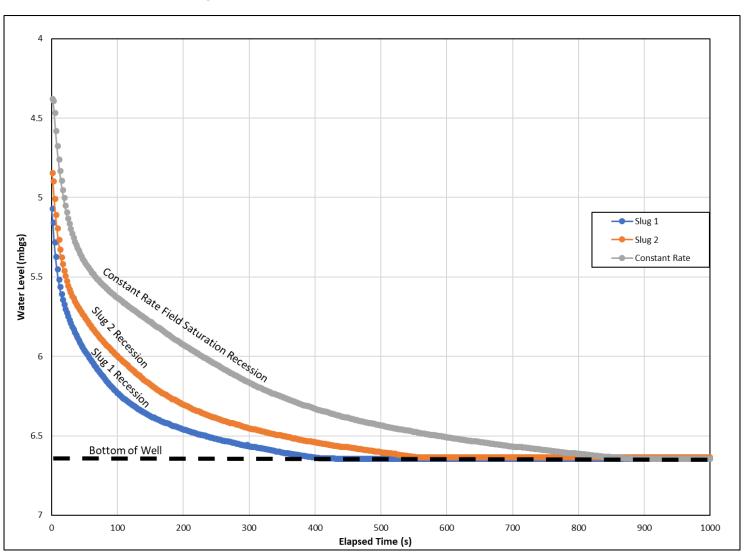


Figure 8. MW-3 In-Well Infiltration Response Curves

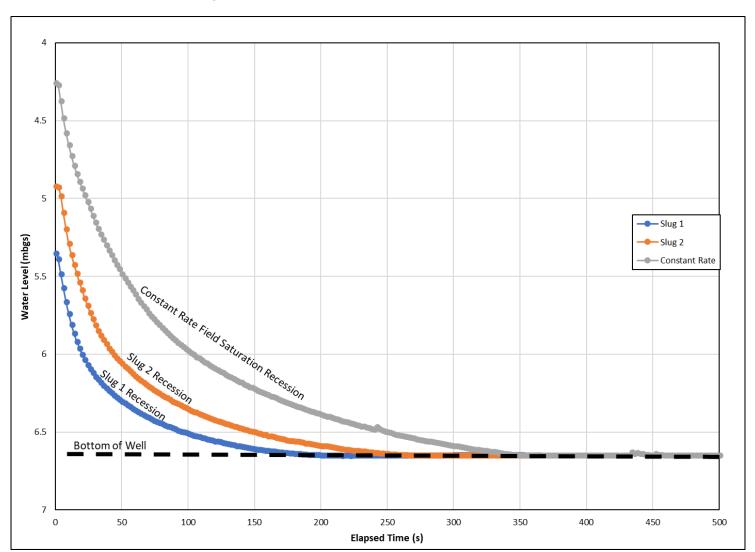


Figure 9. MW-6 In-Well Infiltration Response Curves

3.3.3 Summary of Infiltration Results

The average infiltration rates as determined through each method of testing are summarized in **Table 9**. Soil infiltration characteristics and the deep water table make this site suitable for a wide variety of high volume infiltration methods, such as the LID system proposed by SKA, presented in **Appendix C2** (SKA, 2021).

Table 9. Summary of Infiltration Results

Infiltration Calculation Method	K _{fs} (m/sec)	Infiltration Rate (mm/hr)
Empirical Relationship	5.2x10 ⁻⁶	72
Guelph Permeameter	5.5x10 ⁻⁶	73
In-Well Infiltration	4.6x10 ⁻⁶	69
Geometric Mean	5.1x10 ⁻⁶	71

3.4 Groundwater Quality

Groundwater quality sampling was not completed from the monitoring wells as the water table was below the depths of the wells. As an alternative, water samples were collected from two (2) private wells located on site (241 Durham Road, and 231 Durham Road). Sampling was completed on November 8, 2018. These wells were tested for a suite of water quality parameters including physical tests, anions and nutrients, organic and inorganic carbon, silica, bacteriological tests, and dissolved metals.

Based on the results, the groundwater quality of this area does not indicate any exceedances of the Ontario Drinking Water Quality Standards (ODWS) for health-related parameters listed under the Maximum Allowable Concentration (MAC) criteria. The complete chemical analysis is presented in **Table 10** and the Certificate of Analysis is provided in **Appendix F**.

Parameter	Lowest Detection Limit	Units	ODWS MAC Criteria	241 Durham Road Nov 8, 2018	231 Durham Road Nov 8, 2018
		Physical Tests	(Water)		
Colour, Apparent	2.0	CU	-	46.4	36.0
Conductivity	3.0	umhos/cm	-	217	651
рН	0.10	pH units	-	8.17	7.89
Redox Potential	-1000	mV	-	251	288
Total Dissolved Solids	20	mg/L	-	118	468
Turbidity	0.10	NTU	-	47.2	33.2
		Anions and Nutrie	nts (Water)		
Alkalinity, Bicarbonate (as CaCO3)	10	mg/L	-	113	138
Alkalinity, Carbonate (as CaCO3)	10	mg/L	-	<10	<10
Alkalinity, Hydroxide (as CaCO3)	10	mg/L	-	<10	<10

Table 10. Groundwater Quality Results

Hydrogeological Assessment to Support Townhome Development at 231, 235, 237, 241, 245 and 249 Durham Road No. 8 (formerly Reach Street), Uxbridge, ON

Palmer...

Parameter	Lowest Detection Limit	Units	ODWS MAC Criteria	241 Durham Road Nov 8, 2018	231 Durham Road Nov 8, 2018
Alkalinity, Total (as	10	mg/L	-	113	138
CaCO3) Ammonia, Total (as N)	0.020	mg/L	_	0.079	0.027
Bromide (Br)	0.10	mg/L	-	<0.10	<0.10
Chloride (CI)	0.50	mg/L	-	1.54	86.2
Computed Conductivity	-	uS/cm	-	202	629
Conductivity % Difference	-	%	-	-7.2	-3.4
Fluoride (F)	0.020	mg/L	1.5	0.036	0.021
Hardness (as CaCO3)	-	mg/L	-	111	304
Ion Balance	-	%	-	125	108
Langelier Index	-	-	-	0.2	0.6
Nitrate and Nitrite as N	0.022	mg/L	10	<0.022	< 0.022
Nitrate (as N)	0.020	mg/L	10	<0.020	<0.020
Nitrite (as N)	0.010	mg/L	1	<0.010	<0.010
Saturation pH	-	рН	-	7.92	7.34
Orthophosphate- Dissolved (as P)	0.0030	mg/L	-	<0.0030	<0.0030
TDS (Calculated)	-	mg/L	-	113	355
Sulfate (SO4)	0.30	mg/L	-	1.23	64.6
Anion Sum	-	me/L	-	1.95	6.06
Cation Sum	-	me/L	-	2.44	6.53
Cation – Anion Balance	-	%	-	11.2	3.7
		ganic / Inorganic Ca	arbon (Wate	er)	
Dissolved Organic Carbon		mg/L	-	2.02	1.39
		Inorganic Paramete	ers (Water)		
Silica	0.11	mg/L	-	4.7	4.28
		Bacteriological Tes		0	0
E. Coli	-	CFU/100mL Dissolved Metals	0	0	0
Aluminum (AI)-Dissolved	0.0050	mg/L	s (water)	<0.0050	<0.0050
Antimony (Sb)-Dissolved	0.00010	mg/L	0.006	<0.00010	<0.00010
Arsenic (As)-Dissolved	0.00010	mg/L	0.000	0.00107	<0.00010
Barium (Ba)-Dissolved	0.00010	mg/L	1	0.0369	0.0307
Beryllium (Be)-Dissolved	0.00010	mg/L		< 0.00010	< 0.00010
Bismuth (Bi)-Dissolved	0.000050	mg/L	-	< 0.000050	< 0.000050
Boron (B)-Dissolved	0.010	mg/L	5	< 0.010	<0.000
Cadmium (Cd)-Dissolved	0.000010	mg/L	0.005	<0.00010	<0.00010
Calcium (Ca)-Dissolved	0.050	mg/L	-	24.3	93.7
Chromium (Cr)-Dissolved	0.00050	mg/L	0.05	< 0.00050	<0.00050
Cobalt (Co)-Dissolved	0.00010	mg/L	-	< 0.00010	0.00098
Copper (Cu)-Dissolved	0.00020	mg/L	-	0.00048	<0.00020
Iron (Fe)-Dissolved	0.010	mg/L	-	1.74	<0.010
Lead (Pb)-Dissolved	0.000050	mg/L	0.01	0.000268	0.000086
Magnesium (Mg)- Dissolved	0.050	mg/L	-	12.2	17.0
Manganese (Mn)- Dissolved	0.00050	mg/L	-	0.0998	0.761
Molybdenum (Mo)- Dissolved	0.000050	mg/L	-	0.000690	0.000758

Parameter	Lowest Detection Limit	Units	ODWS MAC Criteria	241 Durham Road Nov 8, 2018	231 Durham Road Nov 8, 2018
Nickel (Ni)-Dissolved	0.00050	mg/L	-	<0.00050	0.00068
Phosphorus (P)-Dissolved	0.050	mg/L	-	<0.050	<0.050
Potassium (K)-Dissolved	0.050	mg/L	-	1.28	1.11
Selenium (Se)-Dissolved	0.000050	mg/L	0.05	0.000149	0.000093
Silicon (Si)-Dissolved	0.050	mg/L	-	2.20	2.00
Silver (Ag)-Dissolved	0.000050	mg/L	-	<0.000050	<0.000050
Sodium (Na)-Dissolved	0.50	mg/L	20	4.30	9.80
Strontium (Sr)-Dissolved	0.0010	mg/L	-	0.0893	0.179
Sulfur (S)-Dissolved	5.0	mg/L	-	<5.0	21.5
Thallium (TI)-Dissolved	0.000010	mg/L	-	<0.000010	<0.000010
Tin (Sn)-Dissolved	0.00010	mg/L	-	0.00521	0.00195
Titanium (Ti)-Dissolved	0.00030	mg/L	-	<0.00030	<0.00030
Tungsten (W)-Dissolved	0.00010	mg/L	-	<0.00010	<0.00010
Uranium (U)-Dissolved	0.000010	mg/L	0.02	0.000010	0.000191
Vanadium (V)-Dissolved	0.00050	mg/L	-	<0.00050	<0.00050
Zinc (Zn)-Dissolved	0.0010	mg/L	-	0.0187	0.583
Zirconium (Zr)-Dissolved	0.00030	mg/L	-	<0.00030	<0.00030

3.5 Phosphorous Budget

The Lake Simcoe Phosphorus Offsetting Program (LSPOP) requires that all new developments must control 100% of the phosphorus from leaving their property. Based on the Lake Simcoe Region Conservation Authority (LSRCA) Phosphorus Offsetting Policy and the MECP Phosphorus Budget Tool (V2.0 Release Update – March 30, 2012) Palmer estimated the pre- and post-development phosphorous budget for the site. The phosphorous budget summary based on the MECP Tool is presented in **Appendix E**. The post development assessment is based on the drainage areas and proposed LID works for the site as presented in **Appendix C2**.

An innovative LID treatment train approach has been presented by engineers a SKA that includes: rear yard swales with a granular cistern (Rear Yard LID #1 - #5), granular cisterns below perforated pipes (Perforated Pipe #0 - #7), and two Storm Chambers that will receive and infiltrate overflow from the swales and perforated pipes. Based on the guidance document for the MECP Phosphorus Budget Tool, a treatment train approach can be taken resulting in additive effects of each mitigative LID. In areas were rear yard swales (87% phosphorus reduction) overflow into a series of 2 storm chambers (also 87% reduction), the sum of the reductions is 98% (=0.87 +[(1-0.87)*0.87] = 0.98).

Based on a total pre-development area of 3.57 ha, subdivided into 2.47 ha of development and 1.10 ha of forest, the total pre-development phosphorous load was calculated to be 0.35 kg/year. Based on the site plan and proposed treatment systems designed by engineers at SKA (i.e., implementing a treatment train approach), the post-development load was estimated to be reduced to 0.18 kg/year, and the effects of amortized construction phase loading assuming an 12-month long construction phase was estimated to add 0.03 kg/year. The combined post-development phosphorus load including the construction phase loading is therefore 0.22 kg/year.

The pre- to post-development change in phosphorus loading represents a reduction by 48% from predevelopment conditions without construction phase loading (-0.17 kg/year), and a reduction of 39% with construction phase loading (-0.14 kg/year). The reduction of phosphorus loading post-development is a result of the implementation of infiltration trenches and perforated pipe systems (**Appendix C2**) and best management practices (BMPs), as well as the use of a treatment train approach as mitigation.

The innovative and detailed measured proposed by SKA to control stormwater runoff and promote infiltration at the site has resulted in a significantly reduced phosphorus load post-development. This exceeds the requirements of the LSPP and provides a benefit for the watershed.

3.6 Pre-Development Water Budget

3.6.1 Methodology

A pre-development water budget was completed for the overall study area using a monthly soil-moisture balance approach (Thornthwaite and Mather, 1957). The water balance calculations estimate average annual evapotranspiration (evaporation and plant transpiration) using factors such as monthly precipitation, temperature and latitude. Long term climate data were obtained from the nearest meteorological station to the study area, the Udora climate station (44°15'N, -79°09'W), over the 30-year duration from 1981 to 2010.

The average available water surplus, which is the water available for infiltration and runoff purposes, was calculated by subtracting the average annual evapotranspiration from the average annual precipitation. Based on soil conditions at the site, a soil moisture retention value of 150 mm was utilized to represent the soil type and vegetation cover. The resulting annual water surplus was then partitioned using infiltration coefficients based on MOEE (1995) and modified based on site specific conditions. This approach takes into consideration three factors: topography/slope, soil type, and land cover, which are summed to provide a representative infiltration factor for the area. A summary of the infiltration factors used in the water balance assessment are provided in **Table 11**. The total average annual infiltration over pervious areas was then calculated by multiplying the applicable water surplus value by the sum of the three individual factors.

Area Description	Infiltration Factor Value
SOIL TYPE	
Ice-contact stratified drift: sand and gravel, minor silt, clay and silt	0.45
TOPOGRAPHY/SLOPE	
 <1% slope 	0.20
PRE-DEVELOPMENT LAND COVER	
Wooded Area/Lawn	0.15
OVERALL INFILTRATION RATE FOR SITE	0.80

Table 11. Summary of Infiltration Factors

An impervious factor was additionally utilized to account for areas within the site occupied by pre-existing residential lots. Over these surfaces, the available water for infiltration and runoff is considered to be precipitation minus evaporation (P-E). Impervious surfaces prevent infiltration, and the absence of vegetation removes the Transpiration (T) component from the water balance. Evaporation is small compared with T and is estimated to be approximately 10% of annual precipitation.

Palmer

3.6.2 Results

The calculated actual ET (or AET) based on the Thornthwaite and Mather monthly water balance model is approximately 519 mm/year (**Table 12**). The actual evapotranspiration is calculated based on a potential ET (or PET) and soil-moisture storage withdrawal. Monthly PET is estimated using monthly temperature data and is defined as a water loss from a homogeneous vegetation covered area that never lacks water (Thornthwaite, 1948; Mather, 1978). The calculated PET for the study area is 596 mm/year, or about 59% of the total precipitation. In general, there is a soil moisture deficit of 76 mm/year.

The estimated water surplus within the site is approximately 367 mm/year (**Table 12**). The water surplus has two components: a runoff component which is the overland flow when the soil moisture capacity is exceeded, and an infiltration component. Using the method in the MECP SWM manual and MOEE (1995) for guidance, and with the consideration that approximately 0.30 ha of the property consists of existing residential land use, it is estimated that approximately 23% (3,087 m³/year) of the surplus runs off, and the remaining 77% (10,451 m³/year) infiltrates the soils. Results are summarized in **Table 13**. Runoff may eventually either recharge the local groundwater system, or form part of a perched water table.

	Water Balance (mm)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Precipitation	ו (mm)	64.9	45.9	53.1	67.9	82.1	106.6	86.4	73.9	87.3	74.9	83.2	60	886.2
Temperatur	e (°C)	-7	-6.6	-1.3	5.7	12.2	18	19.9	19.3	15.1	8.6	2.4	-4	7
Potential Ev	apotranspiration (PET)	0	0	0	30	76	116	131	117	78	39	8	0	596
P – PET		65	46	53	38	6	-9	-45	-43	9	36	75	60	290
Change in S	Soil Moisture Storage	0	0	0	-28	-33	-21	-6	6	20	26	28	0	-8
Soil	Soil Moisture Storage	150	150	150	122	89	68	62	68	88	114	142	150	-
	Actual Evapotranspiration (AET)	0	0	0	30	76	128	92	68	78	39	8	0	519
	Soil Moisture Deficit (mm)	0	0	0	0	0	-12	39	49	0	0	0	0	76
150 mm	Surplus (P – AET)	65	46	53	38	6	-21	-6	6	9	36	75	60	366.9

Table 12. Summary of Annual Water Surplus Values by Zone

3.7 Post-Development Water Budget (Without Mitigation)

3.7.1 Methodology

A post-development water budget for the site was completed using a soil-moisture balance approach (Thornthwaite and Mather, 1957) combined with the land use plan provided by Hunt Design Associates (2019) (**Appendix A**). Each land use was assigned an impervious factor based on its percentage of imperviousness cover.

Over impervious areas, the percent of imperviousness was determined using areas provided in the proposed LID design plan (SKA, 2021) (**Appendix C2**). This reduces calculation error and improves consistency between the pre- and post-development results of the water budget. An infiltration coefficient of 0.30 was applied where fill materials will be used, and in areas expected to be left untouched such as the woodlot and LSRCA buffer, the surplus was partitioned using the site-specific infiltration and runoff factors determined under pre-development conditions (MOEE, 1995). Infiltration and runoff the pervious surfaces were then calculated by multiplying the water surplus value by the factors.

Palmer

3.7.2 Results

Based on the proposed land use (Hunt, 2019), and the imperviousness of the site reported in the proposed LID design plan (SKA, 2021), the total infiltration and runoff volumes for the site following development are 3,716 m³/year and 19,228 m³/year, respectively. The results of the calculations are provided in **Table 14**. This represents a decrease in infiltration by approximately 64% from the predevelopment scenario (10,451 m³/year), and an increase in runoff by approximately 523% from predevelopment (3,087 m³/year). The 64% decrease in infiltration assumes no mitigation strategies are in place, and therefore represents a "worst case" scenario. This volume is therefore the target when designing and implementing LID measures on site.

3.8 Post-Development Water Budget (With Mitigation)

3.8.1 Methodology

A post-development water budget for the site, including proposed LID strategies, was completed using the land use plan (Hunt, 2019) (**Appendix A**), and the LID design plan (SKA, 2021) (**Appendix C1**). The percent of imperviousness cover for each drainage area was also provided in the LID design plan.

Three (3) LID strategies have been proposed as a method to balance infiltration volumes postdevelopment: rear yard swales with a granular cistern (Rear Yard LID #1 - #5), granular cisterns below perforated pipes (Perforated Pipe #0 - #7), and two Storm Chambers that will receive and infiltrate overflow from the swales and perforated pipes. Locations of the proposed LIDs are shown in **Appendix C2**. The depth of the LID is expected to range between 1.5 and 3.8 mbgs, which was compared to the water table depth on **Figure 4**. It is clear that the LID features will be between 6 and 10 m above the water table at the site. The rear yard swales are designed to accept approximately 50% of the adjacent townhouse roof runoff from blocks along the perimeter of the site, and granular cisterns below perforated pipes are designed to accept runoff from the remaining site area. Overflow from the perforated pipes and rear yard LID systems will be directed to two Stormwater Chambers (Stormwater Chamber 1 and 2) located in the north section of the development plan, which will provide additional water storage and infiltration.

The LID system was sized and designed by SKA to accommodate a 40 mm precipitation event. The total average annual precipitation was determined by adding the daily events which are less than or equal to 40 mm per day, and averaging the annual sums from the 30-year climate normals (1981 to 2010). Precipitation data for this analysis was obtained from the Toronto Lester B. Pearson International Airport Climate Station. Any water storage unable to be accommodated by the Stormwater Chambers following the LID and perforated pipe systems will be converted to runoff.

3.8.2 Results

The results of the post-development water balance inclusive of the proposed LIDs is provided on **Table 15**. Based on the proposed land use and LID measures, approximately 15,329 m³/year of additional infiltration is retained through the use of LIDs. The total infiltration post-development is therefore 19,044 m³/year, which includes infiltration that occurs without the aid of LIDs on grassed lawns and retained forest areas (3,716 m³/year, **Section 3.7.2**). When compared to the pre-development conditions, this represents an 82% increase in infiltration. With the increase in infiltration, the total runoff is expected to be subsequently reduced to 3,899 m³/year, compared with 3,087 m³/year pre-development, an increase of 26%. The changes in the water budget from pre-to-post development are summarized in **Table 16**.

Table 13. Summary of Pre-Development Water Balance Results

Land Use Area (ha) Impervious Surfaces							Pe	rvious Surfaces			Total Runoff (m ³ /yr)	Total Infiltration (m ³ /yr)	
Land Ose	Area (IIa)	Factor	Area (ha)	Surplus (m/yr)	Runoff (m ³ /yr)	Area (ha)	Surplus (m/yr)	Runoff Coefficient	Runoff (m ³ /yr)	Infiltration Coefficient	Infiltration (m ³ /yr)	Total Runon (m/yr)	Total initiation (in /yr)
Forested / Grassed Area	3.32	0.00	0.00	0.798	0.00	3.32	0.367	0.20	2,438	0.80	9,752	2,438	9,752
Rural Residential	0.30	0.20	0.06	0.798	474	0.24	0.367	0.20	175	0.80	698	649	698
TOTAL	3.57	-	0.06	-	474	3.56	-	-	2,613	-	10,451	3,087	10,451

Table 14. Summary of Post-Development Water Balance Results (no LID) ID

Catchment	Surficial Geology	Catchment Area (ha)	Percent Imperviousness (%)	Impervious area (ha)	Water Surplus on Impermeable Surfaces (m/a)	Runoff from Impervious Area (m3/a)	Estimated Pervious Area (ha)	Water Surplus on Vegetated Pervious Areas (m/a)	Runoff Coefficient	Runoff Volume From Pervious Area (m3/a)	Infiltration Coefficient	Infiltration Volume from Pervious Area (m3/a)	Total Runoff Volume (m3/a)	Total Infiltration Volume (m3/a)
Rear Yard LID #1	Sand	0.17	62%	0.11	0.798	838	0.07	0.373	0.30	73	0.70	170	911	170
Perforated Pipe #0	Sand	0.03	71%	0.02	0.798	170	0.01	0.373	0.30	10	0.70	23	179	23
Perforated Pipe #1	Sand	0.03	85%	0.03	0.798	204	0.00	0.373	0.30	5	0.70	12	209	12
Perforated Pipe #2	Sand	0.10	92%	0.09	0.798	733	0.01	0.373	0.30	9	0.70	21	742	21
Perforated Pipe #3	Sand	0.22	75%	0.17	0.798	1,317	0.06	0.373	0.30	62	0.70	144	1,379	144
Storm Chamber 4	Sand	0.62	78%	0.49	0.798	3,878	0.13	0.373	0.30	150	0.70	351	4,028	351
Rear Yard LID #2	Sand	0.30	75%	0.23	0.798	1,796	0.08	0.373	0.30	84	0.70	196	1,880	196
Perforated Pipe #5	Sand	0.05	81%	0.04	0.798	324	0.01	0.373	0.30	10	0.70	24	335	24
Rear Yard LID #3	Sand	0.11	75%	0.08	0.798	659	0.03	0.373	0.30	31	0.70	72	689	72
Rear Yard LID #5	Sand	0.08	80%	0.06	0.798	508	0.02	0.373	0.30	18	0.70	43	526	43
Perforated Pipe #6	Sand	0.21	80%	0.17	0.798	1,337	0.04	0.373	0.30	48	0.70	111	1,385	111
Storm Chamber 3	Sand	0.02	85%	0.02	0.798	136	0.00	0.373	0.30	3	0.70	8	139	8
Rear Yard LID #4	Sand	0.06	71%	0.04	0.798	340	0.02	0.373	0.30	19	0.70	45	360	45
Non-Perforated Pipe #7	Sand	0.37	78%	0.29	0.798	2,295	0.08	0.373	0.30	92	0.70	215	2,387	215
Storm Chamber 2 (a+b)	Sand	0.26	75%	0.20	0.798	1,563	0.06	0.373	0.30	72	0.70	168	1,635	168
Storm Chamber 1	Sand	0.00	-	0.00	0.798	0	0.00	0.373	0.30	0	0.70	0	0	0
Pervious (LRSCA Buffer, Woodlot)	Sand	0.96	25%	0.24	0.798	1,916	0.72	0.367	0.20	528	0.80	2,113	2,444	2,113
TOTAL		3.620		2.26		18,013	1.33			1,215		3,716	19,228	3,716

Pre-Developme Post-Development

Pre-to-Post Developm

		Runoff	Infiltration
nent	m3/yr	3,087	10,451
: (no LID)	m3/yr	19,228	3,716
	% Change	523%	-64%
ent Change	Difference (m3)	16,141	-6,735

Table 15. Summary of Post-Development Water Balance Results (with LID)

ID	Surficial Geology	Catchment Area (ha)	Percent Imperviousness (%)	Impervious area (ha)	Water Surplus on Impermeable Surfaces (m/a)	Runoff from Impervious Area (m3/a)	Estimated Pervious Area (ha)	Water Surplus on Vegetated Pervious Areas (m/a)	Runoff Coefficient	Runoff Volume From Pervious Area (m3/a)	Infiltration Coefficient	Infiltration Volume from Pervious Area (m3/a)	LID Mitigation: Infiltration (m3/a)	LID Mitigation: Runoff (m3/a)	Total Runoff Volume (m3/a)	Total Infiltration Volume (m3/a)
Rear Yard LID #1	Sand	0.17	62%	0.11	0.798	838	0.07	0.373	0.30	73	0.70	170	798.2	-798.21	113	968
Perforated Pipe #0	Sand	0.03	71%	0.02	0.798	170	0.01	0.373	0.30	10	0.70	23	161.5	-161.5425	18	184
Perforated Pipe #1	Sand	0.03	85%	0.03	0.798	204	0.00	0.373	0.30	5	0.70	12	193.9	-193.851	15	206
Perforated Pipe #2	Sand	0.10	92%	0.09	0.798	733	0.01	0.373	0.30	9	0.70	21	697.9	-697.8636	44	719
Perforated Pipe #3	Sand	0.22	75%	0.17	0.798	1,317	0.06	0.373	0.30	62	0.70	144	1254.3	-1254.33	124	1,398
Storm Chamber 4	Sand	0.62	78%	0.49	0.798	3,878	0.13	0.373	0.30	150	0.70	351	3692.7	-3692.6715	335	4,043
Rear Yard LID #2	Sand	0.30	75%	0.23	0.798	1,796	0.08	0.373	0.30	84	0.70	196	1710.5	-1710.45	170	1,906
Perforated Pipe #5	Sand	0.05	81%	0.04	0.798	324	0.01	0.373	0.30	10	0.70	24	308.9	-308.86926	26	333
Rear Yard LID #3	Sand	0.11	75%	0.08	0.798	659	0.03	0.373	0.30	31	0.70	72	627.2	-627.165	62	699
Rear Yard LID #5	Sand	0.08	80%	0.06	0.798	508	0.02	0.373	0.30	18	0.70	43	483.5	-483.4872	43	526
Perforated Pipe #6	Sand	0.21	80%	0.17	0.798	1,337	0.04	0.373	0.30	48	0.70	111	1273.3	-1273.335	111	1,384
Storm Chamber 3	Sand	0.02	85%	0.02	0.798	136	0.00	0.373	0.30	3	0.70	8	129.2	-129.234	10	137
Rear Yard LID #4	Sand	0.06	71%	0.04	0.798	340	0.02	0.373	0.30	19	0.70	45	323.8	-323.8452	36	369
Non-Perforated Pipe #7	Sand	0.37	78%	0.29	0.798	2,295	0.08	0.373	0.30	92	0.70	215	2185.6	-2185.575	202	2,401
Storm Chamber 2 (a+b)	Sand	0.26	75%	0.20	0.798	1,563	0.06	0.373	0.30	72	0.70	168	1488.1	-1488.0915	146	1,656
Storm Chamber 1	Sand	0.00	-	0.00	0.798	0	0.00	0.373	0.30	0	0.70	0	0.0	0	0	0
Pervious (LRSCA Buffer, Woodlot)	Sand	0.96	25%	0.24	0.798	1,916	0.72	0.367	0.20	528	0.80	2,113	-	-	2,444	2,113
TOTAL		3.570		1.10		8,753	0.97			812		2,775	15328.52076	-15328.52076	3,899	19,044

Pre-Development

Post-Development (no LI

Pre-to-Post Development Ch

LID Mitigation

		Runoff	Infiltration
	m3/yr	3,087	10,451
ID)	m3/yr	19,228	3,716
	% Change	523%	-64%
hange	Difference (m3)	16,141	-6,735
	Additional Infiltration from LID	-15,329	15,329
	Totals	3,899	19,044
	% Change	26%	82%
	Difference (m3)	812	8,593

The increase in infiltration and decrease in runoff volumes post-development is a reflection of the uniquely high recharge conditions at the site. As the study area is comprised of high permeability sand and silt surficial soils of the ORAC and has a deep water table (10.05 – 15.02 mbgs) promoting infiltration, nearly all of the water captured in the rear yard LIDs, perforated pipes, and Stormwater Chambers will be infiltrated.

It is expected that the 82% increase in infiltration will have an overall positive impact on natural conditions in the area. Based on the direction of groundwater flow within the site, shown in **Figure 5**, infiltration will be directed south towards Uxbridge Brook, and the associated Uxbridge Brook Headwaters Wetland Complex. The headwaters of Uxbridge Brook are supported by groundwater discharge, and this reach is known to support coldwater fish habitat (LSRCA, 1997).

To maintain groundwater quality of the infiltrated water, much of the water directed to the LID system will be from clean roof runoff (SKA, 2021). In addition, all water from paved surfaces will be directed through properly sized oil/water separators and then through the LID treatment train consisting of fine granular materials in both the perforated pipe system and the Storm Chambers. These measures are expected to maintain the quality of the infiltrated water.

Stage	Units	Runoff	Infiltration
Pre-Development	m³/yr	3,087	10,451
Post-Development (no LID)	m³/yr	19,228	3,716
Change Pre-to-Post Development (no LID)	% Change	523%	-64%
	Difference (m ³)	16,141	-6,735
LID Mitigation	Additional Infiltration from LID (m³/yr)	-15,329	15,329
	Totals (m³/yr)	3,899	19,044
Change Pre-to-Post Development (with LID)	% Change	26%	82%
	Difference (m ³ /yr)	812	8,593

Table 16. Summary of Pre-to-Post Development Water Balance Results

Palmer...

4. Hydrogeological Considerations for Construction

4.1 Source Water Protection

On January 2015, a Source Water Protection Plan was completed that encompasses the Lake Simcoe Source Protection Area (LSRCA, 2015). The Source Water Protection Plan identifies three main regulatory factors under the *Clean Water Act (2006)* relating to local hydrogeology to consider for site development: Significant Groundwater Recharge Areas (SGRAs), Highly Vulnerable Aquifers (HVAs), and Wellhead Protection Areas (WHPAs).

Based on the MECP Source Protection Information mapping, the proposed development is outside of the delineated WHPAs for the Uxbridge municipal supply wells, and is approximately 125 m west of the WHPA-D for the supply wells MW5 and MW7. The study area does fall within designated WHPA-Q1 and WHPA-Q2 areas and is therefore subject to the recharge management policy. This policy states that a hydrogeological assessment and water balance must be completed to ensure pre-development infiltration volumes at the site are maintained post-development.

The majority of the site is situated within a Significant Groundwater Recharge Area and has been assigned a vulnerability score of 6 (**Appendix D**). As the potential for recharge is high, consideration should be given to maintaining or improving infiltration in this region. The site area is additionally situated within a HVA. In these areas, the risk of groundwater contamination is greater due to highly permeable materials at surface. As the study area has been assigned a SWPP vulnerability score of 6, no significant threat is expected which would require stormwater management and/or water balance restrictions.

4.2 Short Term Dewatering

The proposed site development consists of townhouses with one (1) level of basement, founded at approximately 280 masl or 3 mbgs. The deepest LID feature will be constructed at approximately 3.8 mbgs (**Figure 4**). Therefore, dewatering is not expected to be required, as the water table is between approximately 10.05 mbgs and 15.02 mbgs, corresponding to an approximate elevation of range of 270.6 and 271.7 masl.

As construction dewatering will not be required, a Permit To Take Water (PTTW) from the MECP and/or registration on the Environmental and Sector Registry (EASR) are not expected to be needed. No groundwater monitoring is recommended as construction works will take place between approximately 6 and 10 m above the groundwater table.

4.3 Long Term Drainage

Following townhome construction, long term groundwater flow to the underdrain system for the building/basement will be a function of the upward flux through the sand and silt units, leakage through the shoring system around the buildings, and the infiltration rate at the site. Since both the MECP water well records and SPCL borehole data indicate the water table is greater than 6 m below the townhouse foundations, it is not expected that long term drainage will be required.

5. Summary and Conclusions

Based on the results of our investigation, the following summary of conclusions and recommendations are presented:

- The proposed development at 241 Durham Road No. 8 in Uxbridge, Ontario is approximately 3.57 ha in size, and consists of 11 blocks consisting of townhomes and bungalows built with one (1) level of basement, and one roadway.
- Based on the Sirati & Partners Consultants Ltd (SPCL) geotechnical investigation, the soil conditions at the site generally consist of native sand and sandy silt of the ORAC formation with overlying sand to silty sand textured fill materials. The fill material was identified to approximately 1.8 mbgs. The bottom of the native sand unit was not penetrated during the drilling investigation.
- Based on a search of the MECP Water Well Records, fifty (50) water well records are present within a 500 m radius of the site. Of these wells, thirty-seven (37) are described as water supply (domestic) wells, and the remaining thirteen (13) water well records consisted of test holes, observation and monitoring wells or were abandonment records. Municipal water supply is available to all residents of Uxbridge through three (3) municipal water supply wells, MW5, MW6, and MW7. Municipal wells MW5 and MW7 are located approximately 550 m west of the site, and MW6 is approximately 2 km west.
- Groundwater levels were investigated at the three (3) monitoring wells installed by SPCL in February 2018, October 2018, November 2018, and January 2019, and were found to be dry. Water levels were therefore collected from private wells on site, which indicated a water table depth of between approximately 10.05 mbgs and 15.02 mbgs.
- The hydraulic conductivity of the sand was calculated using the Hazen method on grain size distribution curves provided by SPCL, as Single Well Response Tests (SWRTs) were not possible due to insufficient water in the monitoring wells. The geometric mean K value calculated using this method is 5.2x10⁻⁶ m/sec, which corresponds to an infiltration rate of 72 mm/hr.
- Grain size analyses, Guelph Permeameter testing, In-well Infiltration test methods were each used to determine the hydraulic conductivity and infiltration rates of the surficial soils. These methods revealed hydraulic conductivities of 5.2x10⁻⁶ m/s (72 mm/hr), 5.5x10⁻⁶ m/s (73 mm/hr), and 4.6x10⁻⁶ m/s (69 mm/hr) respectively. The geomean of these K values is 5.1x10⁻⁶ m/s (71 mm/hr).
- Under pre-development conditions, infiltration volumes at the site are approximately 10,451 m³/year, and runoff is approximately 3,087 m³/year. Without mitigation techniques in place, in the post-development scenario, infiltration rates will decrease by 64% to 3,716 m³/year, and runoff will increase by 523% to 19,228 m³/year.

- •[čc@Át[, ælå•ÁJxbridge Brook, which is•č]][¦c∿åÁaˆÁť¦[č}å, æc∿¦Áaãa&@el*^È
- To maintain groundwater quality of the infiltrated water, much of the water directed to the LID system will be from clean roof runoff (SKA, 2021). In addition, all water from paved surfaces will be directed through properly sized oil/water separators and then through the LID treatment train consisting of fine granular materials in both the perforated pipe system and the Storm Chambers. These measures are expected to maintain the quality of the infiltrated water.
- Short-term construction dewatering and long-term foundation drainage are not expected to be required as the water table is more than 5 m lower than the proposed foundation base.
- Based on a comparison of pre-development and post-development phosphorus loads and in consideration of construction phase loading, the MECP phosphorus budgeting tool indicates that the phosphorus load will be reduced by 48% from pre-development conditions without construction phase loading (-0.17 kg/year) and reduced by 39% with construction phase loading (-0.14 kg/year). This exceeds the requirements of the LSPP.

Palmer.

6. Statement of Limitations

The extent of this study was limited to the specific scope of work for which we were retained and that is described in this report. Palmer has assumed that the information provided by the client or any secondary sources of information are factual and accurate. Palmer accepts no responsibility for any deficiency, misstatement or inaccuracy contained in this report as a result of omissions, misinterpretations or negligent acts from relied upon data. Judgment has been used by Palmer in the interpretation of the information provided but subsurface physical and chemical characteristics may differ from regional scale geology mapping and vary between or beyond well/borehole locations given the inherent variability in geological conditions.

Palmer is not a guarantor of the geological or groundwater conditions at the subject site, but warrants only that its work was undertaken and its report prepared in a manner consistent with the level of skill and diligence normally exercised by competent geoscience professionals practicing in the Province of Ontario. Our findings, conclusions and recommendations should be evaluated in light of the limited scope of our work.

The information and opinions expressed in the Report are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT PALMER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS PALMER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belongs to PALMER. Any use which a third party makes of the Report is the sole responsibility of such third party. PALMER accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without PALMER's express written permission. Should the project design change following issuance of the Report, PALMER must be provided the opportunity to review and revise the Report in light of such alteration or variation.

Hydrogeological Assessment to Support Townhome Development at 231, 235, 237, 241, 245 and 249 Durham Road No. 8 (formerly Reach Street), Uxbridge, ON

Palmer...

7. Certification

This report was prepared, reviewed and approved by the undersigned:

Prepared By:

Nolan Boyes, M.Sc. Environmental Scientist

Reviewed By:

Bobby Katanchi, M.Sc., P.Geo. Senior Hydrogeologist

Cilo

Approved By:

Jason Cole, M.Sc., P.Geo. Principal, Senior Hydrogeologist

Palmer...

8. References

Armstrong, D.K. and J.E.P. Dodge, 2007.

Paleozoic Geology of Southern Ontario, Project Summary and Technical Document. Sedimentary Geoscience Section. Ontario Geological Survey. 26 p.

Chapman, L.J. and D.F. Putman, 1984.

Physiography of Southern Ontario. 1973. Special Volume No. 2. Toronto, Ontario. Ontario Geological Survey. 270 p.

Hunter and Associates and Raven Beck Environmental Ltd. 1996.

Hydrogeological evaluation of the Oak Ridges Moraine area: technical report. Part of Background Report 3 for the Oak Ridges Moraine Planning Study. Prepared for the Oak Ridges Moraine Technical Working Committee.

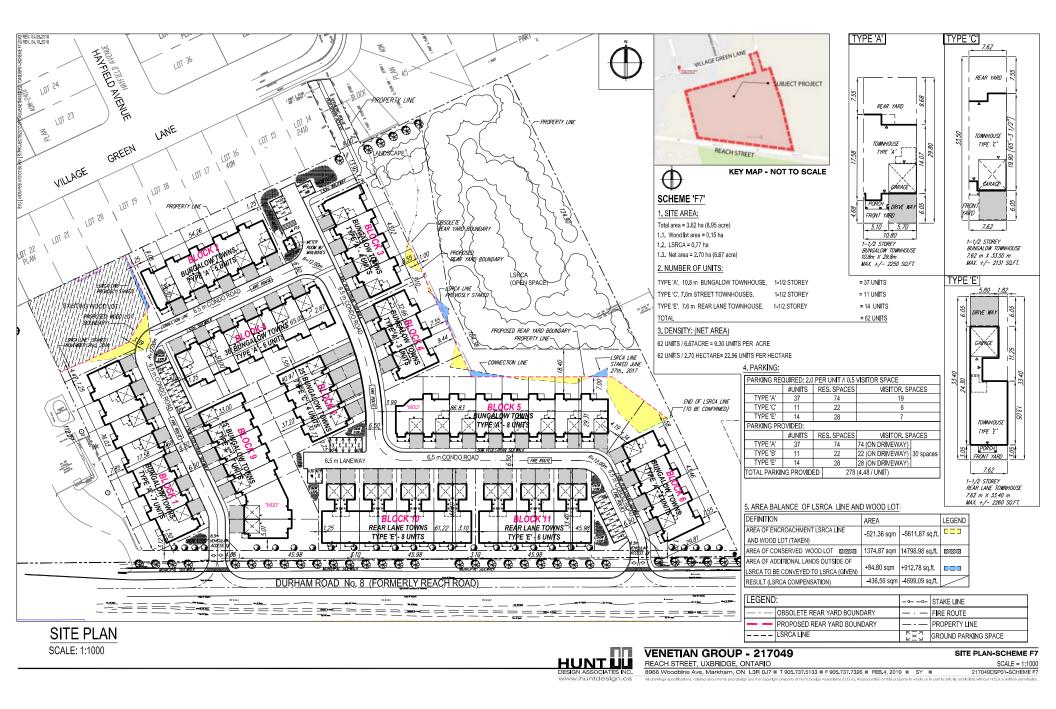
- Lee, D. M., Elrick, D. E., Reynolds, W. D., & Clothier, B. E. (1985). A Comparison Of Three Field Methods For Measuring Saturated Hydraulic Conductivity. *Canadian Journal of Soil Science*, 65(3), 563-573. doi:10.4141/cjss85-060
- LSRCA, 1997:

Uxbridge Brook Watershed Plan, Prepared for the Township of Uxbridge.

- Ministry of the Environment and Energy (MOEE), 1995. Technical Information Requirements of Land Development Applications.
- Ontario Ministry of Municipal Affairs and Housing (OMMAH), 1997. Supplementary Guidelines to the Ontario Building Code 1997. SG-6 Percolation Time and Soil Descriptions. Toronto, Ontario.
- Thornthwaite, C.W. and J.R. Mather, 1957.

Instructions and tables for computing potential evapotranspiration and water balance. Drexel Institute of Technology, Laboratory of Climatology. Publications in Climatology, Volume X. No. 3, 311 p.

- Sharpe, D.R., Barnett P.J., Russell H.A.J., Brennand T.A., and G. Gorrell., 1996. Regional Geological Mapping of the Oak Ridges Moraine, Greater Toronto Area, Southern Ontario. Geological Survey of Ontario.
- Sharpe, D.R., Dyke, L.D., Hinton, M.J., Pullan, S.E., Russell, H.A.J., Brennand, T.A., Barnett, P.J., and Pugin, A., 1996.


Groundwater prospects in the Oak Ridges Moraine area, southern Ontario: application of regional geological models. In: Current Research 1996-E. Geological Survey of Canada, p 181-190.

South Georgian Bay-Lake Simcoe Source Protection Committee, 2015. Approved Assessment Report: Lake Simcoe and Couchiching-Black River Source Protection Area Part 1.

Appendix A

Site Plan Drawing: Scheme E4 (Hunt Design Associates Inc., 2017)

Appendix B

Borehole Logs (Sirati & Partners Consultants Ltd., 2018)

	Engineering Solutions				_			REH			-									1.0	OF 1
	IECT: Proposed Geotechnical Investiga								LING												
	NT: Palmer Environmental Consulting G		Ltd.						od: Sol			ers									
	IECT LOCATION: Reach Street, Uxbrid	lge							eter: 1											275-10	
	JM: Geodetic							Date:	Jan/2	6/201	8					El	NCL N	0.: 2			
BH LO	DCATION: See Drawing 1		i –			-			g Con			TION							-		
	SOIL PROFILE		5	SAMPL	ES	~		RESIS	MIC CO TANCE	PLOT		TION		PI ASTI		URAL			۲	CHEMI ANALY	
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	BER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STI		L TH (kf +	Pa) FIELD V & Sensit	00 I ANE ivity	PLASTI LIMIT W _P		w o		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	ANE GRAIN DISTRIBU	D SIZE UTION
282.5		STRA	NUMBER	ТҮРЕ	ż	GROI	ELEV		JICK TF		. ×	LAB VA	ANE 00		TER CO		I (%) 30	[M	(%) GR SA	
282:3	TOPSOIL: 250 mm	<u>x1 1/</u>						-													
0.3	FILL:Sand, trace silt, brown, very moist	×	1	SS	8		282	-							0						
-		\otimes					202	-													
<u>-</u> 1			2	SS	1			-						0							
-								-						_							
-		\otimes					281	-										-			
- <u>280.7</u> - ₂ 1.8	SAND: trace to some silt, greyish	<u> </u>	3	SS	6			-						0							
-	brown, compact, moist		i					-													
-			_					-													
E			4	SS	28		280	-						0				1		83	89
<u>279.5</u>								-													
- 3.0	SANDY SILT: greyish brown, compact, moist	. .	5	SS	24			F													
-	•		ľ		24		279	-						Ű							
							2.0	-													
4			ł					Ē													
-			·					-													
-							278	-										-			
-			6	SS	21			Ē						0							
-				33	21			-						Ĭ							
								Ē													
-			1				277	-										1			
- 6			1					-													
-			 					-													
			7	SS	27		276	-						0							
E			<u> </u>				270	-													
7								-													
-								-													
E							275											4			
-	becoming dense	. .			05			-												07.0	00 40
<u>⊺</u> ≗ - 274.3			8	SS	35			E							0					27 6	63 10
8.2	END OF BOREHOLE:																				
	Notes:																				
	1. Borehole was open and dry upon completion of drilling																				
	completion of drining																				
			1																		
			1															1			
			1															1			
1			1															1			
1 1		1	1	i i	1		1	I	1	1	1	1		1		1	1	1	1		

	Sirati & Partners Consultants Ltd. Geotechnical & Environmental Services Engineering Solutions				L	OG	OF	во	RE	HOL	.E E	3H2	2									1 OF 1
CLI PRO DA ⁻	DJECT: Proposed Geotechnical Investigat ENT: Palmer Environmental Consulting G DJECT LOCATION: Reach Street, Uxbridg FUM: Geodetic LOCATION: See Drawing 1	roup	Ltd.						Met Diar Date	LLING hod: S meter: e: Jar ing Co	Solid 150 n/28/2	Sten mm 2018	3	ers					EF. NC			275-10
	SOIL PROFILE		5	SAMPL	.ES		Т							TION			NAT					CHEMICAL
(m) <u>ELE\</u> DEPT	H DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" <u>BLOWS</u> 0.3 m	GROUND WATER	CONDITIONS	ELEVATION	SHE O	20		6 ENG) 8 FH (kF + ×	50 1 Pa) FIELD V & Sensit LAB V/	00 I ANE ivity ANE 00	W _P	TER CO	W O ONTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	ANALYSIS AND GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
283. 283. 283.		<u>x1 1/</u>	-						-	+	+								1			
- 0.	3 FILL sand, trace silt, brown, very moist		1	SS	3		ALC: AL	283	- - - -								0					
<u>- 202.</u> - 0.			2	SS	5	zhananananc∙			-							c	×					
-			3	SS	10	-		282	- - - -								0					
<u>- 281.</u> - 2.			4	SS	25			281	-								0					
-			5	SS	20			280	-								0			_		
- 4						· · ·		279	- - - - - -													
- - - -			6	SS	21				-								0					
 - - - - - -								278	-													
276.	8		7	SS	25			277	-								0					
6.																						
2405 2015 LUG 2411-272-10:04-1 2401 22118	Notes: 1. Monitoring well was installed in the borehole upon completion of drilling 2. The monitoring well was observed to be dry on Feb. 2, 2018																					
	JNDWATER ELEVATIONS					<u>GRAF</u> NOTE	<u>Ч</u>	3	× ^{3.}	Numl	pers re	efer		8=3%	Strain	at Follow						

GDT 2/2/18

	Sirati & Partners Consultants Ltd. Geotechnical & Environmental Services Engineering Solutions				L	DG C)F BC	RE	IOLE	E BH	3									1 OF ⁻
CLIE PRO DATI	JECT: Proposed Geotechnical Investigat NT: Palmer Environmental Consulting G JECT LOCATION: Reach Street, Uxbrid JM: Geodetic OCATION: See Drawing 1	iroup	Ltd.					Meth Diam Date	ieter: 1 : Jan/2	DATA lid Ste 50 mm 26/201	n 8	ers					EF. NC			275-10
	SOIL PROFILE		s	SAMPL	.ES			DYNA RESIS	MIC CO	DNE PEI E PLOT		TION		DIAST		URAL			μ	CHEMICAL
(m) <u>ELEV</u> DEPTH 282.8	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE ○ U ● C	AR ST NCONF	I RENG FINED RIAXIAL	1 TH (kf + - ×	I FIELD V & Sensiti LAB VA	ANE vity ANE ANE 00		CON TER CO	NTENT W -O ONTEN	LIQUID LIMIT WL T (%) 30	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	ANALYSIS AND GRAIN SIZE DISTRIBUTION (%) GR SA SI C
- 0.0		<u>xt 1,</u>					A	-												
- 0.3	FILL: sand, trace silt, brown, very moist		1	SS	1			Ē							0					
<u>282.0</u> 0.8			2	SS	3		282	-						0						
- - - - - -			3	SS	8		281	-						0						
	becoming compact		4	SS	15		280	- - - - -						0						81 13 6
<u>3</u> - - - -			5	SS	20			-						o						
- - - - - -						i	279	- - - - - -												
			6	SS	20		278	-							0					
- - - - -							277	-												
<u>276.7</u> - 6.1 - 276.1 - 276.1	SANDY SIL1: greyish brown, compact, moist		7	SS	26			-						0						
	Notes: 1. Monitoring well was installed upon completion of drilling 2. The monitoring well was observed to be dry on Feb. 2, 2018					GRAPH			Number	rs refer		8-30/		at Failu						

GDT 2/2/18

	Sirati & Partners Consultants Ltd. Geotechnical & Environmental Services Engineering Solutions				L	og o	FBC	RE	IOLE	E BH	4									1 OF 1
CL PR DA	OJECT: Proposed Geotechnical Investigat IENT: Palmer Environmental Consulting G OJECT LOCATION: Reach Street, Uxbrid TUM: Geodetic	iroup	Ltd.					Meth Diarr Date	LING I od: Sol ieter: 1 : Jan/2 ng Con	lid Ste 50 mm 28/201	n 8	jers					EF. NC			275-10
БП	SOIL PROFILE		5	SAMPL	ES				MIC CC			TION								CHEMICAL
(m) <u>ELE</u> DEP		STRATA PLOT	NUMBER	түре	"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE OU OC	20 4 AR ST NCONF	RENG	50 E 51 (kl + - ×	Pa) FIELD V & Sensit LAB V	OO ANE vity ANE OO	W _P	TER CO	W O ONTENT	LIQUID LIMIT w _L (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	ANALYSIS AND GRAIN SIZE DISTRIBUTION (%)
284 - 0 - 284		1 1y.	2	-	-	00	ш	5	1					'						GR SA SI CL
- <u>284</u> - 0 - 283	.3 FILL: sand, trace silt, brown, very moist		1	SS	4		284	-							0			-		
	.8 SAND: trace silt, light brown, compact, moist		2	SS	16	-		-							0					
			3	SS	18		283	-							0					
-			4	SS	20	-	282	-						0				-		
<u>3</u> - -			5	SS	22		281	- - - -						0				-		
- - - -								-												
-279 - 4 - 5	.9 .6 SANDY SILT: light brown, compact, moist		6	SS	25	-	280	-						c	>					
-						-	279	-												
- - - -			7	SS	28	-	278	-							o o					
277	.8 .7 END OF BOREHOLE:						270	-												
וה בססיטו וויצוטרוטיטו טיטו טבוטר צבוס	Notes: 1. Borehole was open and dry upon completion of drilling																			
						<u>GRAPH</u> NOTES	+ 3,	× ³ :	Number to Sensi	s refer		8 =3%	Strain	at Failur	re					

SOIL LOG SP17-275-10.GPJ SPCL.GDT 2/2/18

0.0 TOPSOIL:400 mm 34 b 1 SS 1 0	
PROJECT LOCATION: Reach Street, Uxbridge Diameter: 150 mm REF. NO.: SP17-2 DATUM: Geodetic Date: Jan/28/2018 ENCL NO.: 6 BH LOCATION: See Drawing 1 Drilling Contractor: Image: Solid PROFILE SAMPLES Image: Solid PROFILE Image	CHEMICAL ANALYSIS AND GRAIN SIZE DISTRIBUTION (%)
SOIL PROFILE SAMPLES (m) ELEV DESCRIPTION Image: Second structure Unit Im	ANALYSIS AND GRAIN SIZE DISTRIBUTION (%)
(m) DESCRIPTION I S <	ANALYSIS AND GRAIN SIZE DISTRIBUTION (%)
286.9 5 2 2 5 2 2 4 20 40 60 80 100 10 20 30 10 0.0 TOPSOIL:400 mm 3	
286.5 Vice silt, brown, very X	
	i
0.8 SAND: trace to some silt, grevish	
brown, loose, moist	
4 SS 9 0	
becoming compact	
280.2 6.7 END OF BOREHOLE 0	
Notes: 1. Borehole was open and dry upon completion of drilling	

SPCL SOIL LOG SP17-275-10.GPJ SPCL.GDT 2/218

 $\begin{array}{c} \underline{\text{GROUNDWATER ELEVATIONS}} \\ \text{Measurement} \quad \underbrace{\stackrel{1 \text{st}}{\underline{\bigvee}} \quad \underbrace{\stackrel{2 \text{nd}}{\underline{\bigvee}} \quad \underbrace{\stackrel{3 \text{rd}}{\underline{\bigvee}} \quad \underbrace{\stackrel{4 \text{th}}{\underline{\bigvee}}} \end{array}$

	Sirati & Partners Consultants Ltd. Geotechnical & Environmental Services Engineering Solutions				L	OG	OF	во	REHOLE BH	6					1 OF 1
CLIE PRC DAT	DJECT: Proposed Geotechnical Investigat ENT: Palmer Environmental Consulting Gr DJECT LOCATION: Reach Street, Uxbridg UM: Geodetic LOCATION: See Drawing 1	roup	Ltd.						DRILLING DATA Method: Solid Ster Diameter: 150 mm Date: Jan/26/2018 Drilling Contractor	- 1 8 :		REF. NO ENCL N			275-10
	SOIL PROFILE		s	SAMPL	ES	~			DYNAMIC CONE PEN RESISTANCE PLOT			ATURAL LIQUIC	,	₽	CHEMICAL ANALYSIS
(m) <u>ELEV</u> DEPTH		STRATA PLOT	NUMBER	ТҮРЕ	"N" <u>BLOWS</u> 0.3 m	GROUND WATER	CONDITIONS	ELEVATION	SHEAR STRENG O UNCONFINED QUICK TRIAXIAL	+ FIÉLD VANE & Sensitivity			POCKET PEN. (Cu) (kPa)		AIVAL I SIS AND GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
289.0	TOPSOIL: 360 mm	<u>x1 1/</u>						<u> </u>							
- 288.0 - 0.4 - 288.2	FILL: sand, brown, very moist		1	SS	25						0				
- 0.8	SAND: trace to some silt, greyish brown, loose to compact, moist		2	SS	5	IN AN AN AN AN A	J. N. G. N. G. N. G. N. C.	288	-		0		-		
- - - - - 286.1	,		3	SS	14			287	-		0		_		
- 2.3			4	SS	19			000			o				
3 - - - -			5	SS	22			286			0				
- - - -								285	-				_		
- - - - - -			6	SS	18			284			0		_		
- <u>6</u> - - -			7	SS	27			283			0		_		
- <u>282.</u> 6.						E			-						
2011 LUG 2711-273-10.073 2701.001 2218	Notes: 1. Monitoring well was installed upon completion of drilling 2. The monitoring well was observed to be dry on Feb. 2, 2018														
	NDWATER ELEVATIONS					GRAF	Щ	+ 3	× ³ . Numbers refer to Sensitivity	0 ^{8 = 3%} Stra	in at Failure				

CI GDT 2/2/18

 $\begin{array}{c|c} \hline \\ \text{Measurement} & \underline{\overset{1\text{st}}{\underline{V}}} & \underline{\overset{2\text{nd}}{\underline{V}}} & \underline{\overset{3\text{rd}}{\underline{V}}} & \underline{\overset{4\text{th}}{\underline{V}}} \end{array}$

Appendix C

LID Design Plan (Sabourin Kimble & Associates, 2019)

- C1. LID Design Plan Calculations (SKA, 2021)
- C2. LID Plan (SKA, 2021)

C1. LID Design Plan Calculations (SKA, 2021)

Site Description

Total Site Area	3.62	На
Proposed Development Area	2.70	Ha
LSRCA Buffer + Woodlot	0.92	Ha

General Infiltration Requirements

Total Mixed Impervious Surface Area (0.75 coefficient)	20600.0	m²
Total Roof Impervious Area (0.85 coefficient)	6400.0	m ²
Total Site Impervious Area	20890.0	m²
Storm to Infiltrate	40	mm
Total Site Volume to Infiltrate	836	m ³

Proposed Infiltration

LID Unit	Down- stream LID Unit	Capture Area Ha	Contact Area of Impervious- ness m ²	Depth	Proposed LID Infiltration Volume m ³	Drain Down Time Hours
Rear Yard LID #1	Perforated Pipe #2	0.17	1050.0	0.7	41.5	24.0
Perforated Pipe #0	Perforated Pipe #1	0.03	212.5	0.7	5.8	24.0
Perforated Pipe #1	Perforated Pipe #2	0.03	255.0	0.7	13.5	24.0
Perforated Pipe #2	Storm Chamber 4	0.10	918.0	0.7	20.5	24.0
Perforated Pipe #3	Storm Chamber 4	0.22	1650.0	0.7	42.6	24.0
Storm Chamber 4	Perforated Pipe #5	0.62	4857.5	1.4	57.4	47.9
Rear Yard LID #2	Perforated Pipe #5	0.30	2250.0	0.7	91.8	24.0
Perforated Pipe #5	Storm Chamber 2 (a+b)	0.05	406.3	0.7	12.4	24.0
Rear Yard LID #3	N/A	0.11	825.0	0.7	33.2	24.0
Rear Yard LID #5	Perforated Pipe #6	0.08	636.0	0.7	16.9	24.0
Perforated Pipe #6	Storm Chamber 3	0.21	1675.0	0.7	22.4	24.0
Storm Chamber 3	Non-Perforated Pipe #7	0.02	170.0	1.4	203.8	47.9
Rear Yard LID #4	Non-Perforated Pipe #7	0.06	426.0	0.7	13.8	24.0
Non-Perforated Pipe #7	Storm Chamber 2 (a+b)	0.37	2875.0	0.7	0.0	24.0
Storm Chamber 2 (a+b)	Storm Chamber 1	0.26	1957.5	1.4	123.0	47.9
Storm Chamber 1	N/A	0.00	0.0	1.4	180.5	47.9
	TOTAL	2.63		TOTAL	879	

Cumulative Infiltration Volumes

LID Unit	Down- stream LID Unit	Required Infiltration Volume per Reach	Cummulative Infiltration Required	Infiltration Available per Reach	Cummulative Infiltration Available	Available Volume Infiltrated per Reach
		m ³	m ³	m ³	m ³	m ³
Rear Yard LID #1	Perforated Pipe #2	42.0	42.0	41.5	41.5	41.5
Perforated Pipe #0	Perforated Pipe #1	8.5	8.5	5.8	5.8	5.8
Perforated Pipe #1	Perforated Pipe #2	10.2	18.7	13.5	19.4	18.7
Perforated Pipe #2	Storm Chamber 4	36.7	97.4	20.5	81.3	81.3
Perforated Pipe #3	Storm Chamber 4	66.0	66.0	42.6	42.6	42.6
Storm Chamber 4	Perforated Pipe #5	194.3	357.7	57.4	181.3	181.3
Rear Yard LID #2	Perforated Pipe #5	90.0	90.0	91.8	91.8	90.0
Perforated Pipe #5	Storm Chamber 2 (a+b)	16.3	464.0	12.4	285.5	285.5
Rear Yard LID #3	N/A	33.0	33.0	33.2	33.2	33.2
Rear Yard LID #5	Perforated Pipe #6	25.4	25.4	16.9	16.9	16.9
Perforated Pipe #6	Storm Chamber 3	67.0	92.4	22.4	39.3	39.3
Storm Chamber 3	Non-Perforated Pipe #7	6.8	99.2	203.8	243.1	99.2
Non-Perforated Pipe #7	Storm Chamber 2 (a+b)	115.0	231.3	0.0	243.1	231.3
Rear Yard LID #4	Non-Perforated Pipe #7	17.0	17.0	13.8	13.8	17.0
Storm Chamber 2 (a+b)	Storm Chamber 1	78.3	773.6	123.0	651.6	651.6
Storm Chamber 1	N/A	0.0	773.6	180.5	832.1	773.6
Sum of Column=		807		879		807

Infiltration Summary

Total Site Volume Required to Infiltrate	807	m ³
Infiltration Volume Provided	879	m ³
Infiltration Volume Achieved	807	m ³
Remaining Volume Required	-0.2	m³

Perforated Pipe #0 Infiltration Requirements

<i>LID capture</i> Total area of imperviou Volume to in Target Volume to be infil	usness filtrate:	0.03 212.5 40.0 8.5	Ha m ² mm m ³
Maximum clearstone depth: Where	d=- P= T=	PT 1000 28.8 24.0	– percolation rate of native soil (mm/h) detention time (24 hours)
	d=	0.69	
	A=-	1000 V Pnt	-
Where	A=		Bottom area of trench (m ²)
	V=	8.5	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=-	(1000)(12.5) (12.0)(0.4)(72.0)	-

A= 30.7

Contact Area	21.00 m ²
Depth of clearstone	0.69 m
Trench Volume	14.52 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	5.81 m ³

Total Imperviousness to be		
infiltrated in downstream LID	2.69	m ³

Perforated Pipe #1 Infiltration Requirements

Volume to be infiltrated from Up S	stream Source:	2.7	m³
LID captur	e area:	0.03	На
Total area of impervio	usness	255.0	m ²
Volume to ir		40.0	mm
Target Volume to be inf	iltrated:	10.2	m ³
Total Target Volume Required Infilt	for LID tration:	12.9	m³
Maximum clearstone depth:	d=	PT 1000	_
Where	P=	28.8	percolation rate of native soil (mm/h)
	T=	24.0	detention time (24 hours)
	d=	0.69	
	A=-	1000 V	_
	A	Pnt	
Where	A=		Bottom area of trench (m ²)
	V=	10.2	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=	(1000)(12.5) (12.0)(0.4)(72.0)	-
	A- 3		

A= 36.9

Contact Area	49.00 m ²	
Depth of clearstone	0.69 m	
Trench Volume	33.87 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	13.55 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	-0.65	m ³

Rear Yard LID #1 Infiltration Requirements

<i>LID capture</i> Total area of impervious Volume to inf Target Volume to be infil	sness: ïltrate:	0.17 1050.0 40.0 42.0	Ha m ² mm m ³
Maximum clearstone depth:	d=-	PT 1000	-
Where	P=	28.8	percolation rate of native soil (mm/h)
	T=	24.0	detention time (24 hours)
	d=	0.69	
	A=-	1000 V	
	A	Pnt	-
Where	A=		Bottom area of trench (m ²)
	V=	42.0	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=-	(1000)(12.5) (12.0)(0.4)(72.0)	-

A= 151.9

Contact Area	150.00 m ²	
Depth of clearstone	0.69 m	
Trench Volume	103.68 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	41.47 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	0.53	m ³

Perforated Pipe #2 Infiltration Requirements

Volume to be infiltrated from Ups S	stream ource:	-0.1	m³
LID capture	e area:	0.10	На
Total area of impervio	usness	918.0	m ²
Volume to in	filtrate:	40.0	mm
Reach Volume to be infi	ltrated:	36.7	m ³
Total Target Volume Required			2
Infilt	ration:	36.6	m ³
Maximum clearstone depth:	d=	PT	_
	-	1000	
Where	P=	28.8	percolation rate of native soil (mm/h)
	T=	24.0	detention time (24 hours)
	d=	0.69	
	•	1000 V	
	A=	Pnt	-
Where	A=		Bottom area of trench (m ²)
	V=	36.7	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=-	(1000)(12.5) (12.0)(0.4)(72.0)	-

A= 132.8

Contact Area	74.00 m ²
Depth of clearstone	0.69 m
Trench Volume	51.15 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	20.46 m ³

Total Imperviousness to be		
infiltrated in downstream LID	16.13	m ³

Perforated Pipe #3 Infiltration Requirements

<i>LID captu</i> Total area of imperv Volume to Reach Volume to be ir	iousness infiltrate:	0.22 1650.0 40.0 66.0	Ha m ² mm m ³
Maximum clearstone depth:	d=-	РТ 1000	_
Where	P=	28.8	percolation rate of native soil (mm/h)
	T=	24.0	detention time (24 hours)
	d=	0.69	
	A=-	1000 V	_
		Pnt	D attains and a fitness of (m^2)
Where	A= V=	66.0	Bottom area of trench (m ²) runoff volume to be infiltrated (m ³)
P=K/f.s.	v= P=	66.0 28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=-	<u>(1000)(12.5)</u> (12.0)(0.4)(72.0)

A= 238.7

Contact Area	154.00 m ²	
Depth of clearstone	0.69 m	
Trench Volume	106.44 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	42.58 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	23.42	m ³

Storm Chamber 4 Infiltration Requirements

Volume to be infiltrated from Upstre Source:	am	39.56	m³
LID capture	area:	0.62	На
Total area of impervious	sness	4857.5	m ²
Volume to infi	trate:	40.0	mm
Volume to be infiltrated:		194.3	m ³
Total Target Volume Required fo Infiltra		233.9	m³
Drain Down Time:	T=—	1000d P	_
Where	P=	28.8	percolation rate of native soil (mm/h)
	d=	1.38	(m)
P=K/f.s.			
K = 72mm/hr infiltration rate f.s.= 2.5	T=	47.92	detention time (Hours)

Contact Area	104.00 m ²	
Depth of clearstone	1.38 m	
Trench Volume	143.52 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	57.41 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	176.45	m ³

Rear Yard LID #2 Infiltration Requirements

<i>LID capture</i> Total area of imperviou Volume to infi Target Volume to be infil	isness filtrate:	0.30 2250.0 40.0 90.0	Ha m ² mm m ³
Maximum clearstone depth:	d=-	РТ 1000	-
Where	P=	28.8	percolation rate of native soil (mm/h)
	Т=	24.0	detention time (24 hours)
	d=	0.69	
	A=-	1000 V	_
	A	Pnt	
Where	A=		Bottom area of trench (m ²)
	V=	90.0	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=-	(1000)(12.5) (12.0)(0.4)(72.0)	-

A= 325.5

Contact Area	332.00 m ²	
Depth of clearstone	0.69 m	
Trench Volume	229.48 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	91.79 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	-1.79	m ³

Perforated Pipe #5 Infiltration Requirements

Volume to be infiltrated from Upst So	tream ource:	174.7	m³
LID capture	area:	0.05	На
Total area of impervious	sness	406.3	m ²
Volume to infi	ltrate:	40.0	mm
Volume to be infilt	rated:	16.3	m ³
Total Target Volume Required fo Infiltra		190.9	m ³
Maximum clearstone depth:	d=	РТ	_
	-	1000	
Where	P=	28.8	percolation rate of native soil (mm/h)
	T=	24.0	detention time (24 hours)
	d=	0.69	
	A=	1000 V	
	A	Pnt	<u>_</u>
Where	A=		Bottom area of trench (m ²)
	V=	190.9	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A =((1000)(12.5) (12.0)(0.4)(72.0)
	A= 6	90.5	

Contact Area	45.00 m ²
Depth of clearstone	0.69 m
Trench Volume	31.05 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	12.42 m ³

Total Imperviousness to be		
infiltrated in downstream LID	178.49	m ³

Rear Yard LID #3 Infiltration Requirements

<i>LID captur</i> Total area of impervio Volume to ir Target Volume to be inf	ousness ofiltrate:	0.11 825.0 40.0 33.0	Ha m ² mm m ³
Maximum clearstone depth:	d=-	<u>РТ</u> 1000	_
Where	P=	28.8	percolation rate of native soil (mm/h)
	Т=	24.0	detention time (24 hours)
	d=	0.69	
	A=-	1000 V	_
		Pnt	
Where	A=		Bottom area of trench (m^2)
	V=	33.0	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=	<u>(1000)(12.5)</u> (12.0)(0.4)(72.0))

A= 119.4

Contact Area	120.00 m ²	
Depth of clearstone	0.69 m	
Trench Volume	82.94 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	33.18 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	-0.18	m ³

Rear Yard LID #5 Infiltration Requirements

<i>LID captu</i> Total area of impervi Volume to Target Volume to be in	ousness nfiltrate:	0.08 636.0 40.0 25.4	Ha m ² mm m ³
Maximum clearstone depth:	d=-	PT 1000	-
Where	P=	28.8	percolation rate of native soil (mm/h)
	T=	24.0	detention time (24 hours)
	d=	0.69	
	A=-	1000 V	_
		Pnt	$\mathbf{D}_{\mathbf{r}}$ the second state of the second state (m^2)
Where	A=	0F 4	Bottom area of trench (m^2)
P=K/f.s.	V= P=	25.4 28.8	runoff volume to be infiltrated (m ³) percolation rate of native soil (mm/h)
K = 72 mm/hr infiltration rate	r= n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=-	(1000)(12.5) (12.0)(0.4)(72.0)	-

A= 92.0

Contact Area	61.00 m ²	
Depth of clearstone	0.69 m	
Trench Volume	42.16 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	16.87 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	8.57	m ³

Perforated Pipe #6 Infiltration Requirements

Volume to be infiltrated from Upst Sou	ream urce:	8.6	m ³
LID capture a	area:	0.21	На
Total area of impervious	ness	1675.0	m ²
Volume to infil	trate:	40.0	mm
Volume to be infiltr	ated:	67.0	m ³
Total Target Volume Required fo Infiltra		75.6	m ³
Maximum algoritang danthi	4-	РТ	
Maximum clearstone depth:	d=-	1000	—
Where	P=	28.8	percolation rate of native soil (mm/h)
	T=	24.0	detention time (24 hours)
	d=	0.69	
	A=-	1000 V	
	~-	Pnt	
Where	A=		Bottom area of trench (m ²)
	V=	75.6	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
		<u>(1000)(12.5)</u> (12.0)(0.4)(72.0)	
	A= 2	273.3	

Contact Area	81.00 m ²
Depth of clearstone	0.69 m
Trench Volume	55.99 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	22.39 m ³

Total Imperviousness to be		
infiltrated in downstream LID	53.18	m³

Storm Chamber 3 Infiltration Requirements

Volume to be infiltrated from Ups Source:	tream	53.18	m ³
LID captu	re area:	0.02	На
Total area of impervio	ousness	170.0	m ²
Volume to infiltrate:		40.0	mm
Volume to be in	filtrated:	6.8	m ³
Total Target Volume Required Infil	for LID tration:	60.0	m³
Drain Down Time:	T=	1000d P	_
Where	P=	28.8	percolation rate of native soil (mm/h)
	d=	1.38	(m)
P=K/f.s.			
K = 72mm/hr infiltration rate f.s.= 2.5	T=	47.92	detention time (Hours)

Contact Area	147.70 m ²	
Depth of clearstone	1.38 m	
Trench Volume	203.83 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	81.53 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	-21.55	m³

Rear Yard LID #4 Infiltration Requirements

<i>LID capt</i> Total area of imperv Volume to Target Volume to be in	iousness infiltrate:	0.06 426.0 40.0 17.0	Ha m ² mm m ³
Maximum clearstone depth:	d=	PT	
Where	P=	1000 28.8	percolation rate of native soil (mm/h)
Villere	T=	20.0	detention time (24 hours)
	1-	24.0	detention time (24 hours)
	d=	0.69	
	A=	1000 V	
\//boro	^ -	Pnt	Better area of tranch (m^2)
Where	A=	17.0	Bottom area of trench (m^2)
P=K/f.s.	V= P=	17.0	runoff volume to be infiltrated (m ³)
K = 72mm/hr infiltration rate	-	28.8 0.4	percolation rate of native soil (mm/h)
f.s.= 2.5	n= t=	0.4 24.0	porosity of storage media (0.4 for clear stone)
1.5 2.5	ι-	24.0	detention time (24 hours)
	A= (1	<u>(1000)(12.5)</u> 2.0)(0.4)(72.0	0)

A= 61.6

Contact Area	50.00 m ²
Depth of clearstone	0.69 m
Trench Volume	34.56 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	13.82 m ³

Total Imperviousness to be		
infiltrated in downstream LID	3.22	m ³

Non-Perforated Pipe #7 Infiltration Requirements

Volume to be infiltrated from Ups So	tream ource:	-18.3	m ³
LID capture	area:	0.37	На
Total area of imperviou	sness	2875.0	m ²
Volume to inf	iltrate:	40.0	mm
Volume to be infil	rated:	115.0	m ³
Total Target Volume Required fo Infiltr		96.7	m³
Maximum clearstone depth:	d=	РТ	
	u	1000	_
Where	P=	28.8	percolation rate of native soil (mm/h)
	T=	24.0	detention time (24 hours)
	d=	0.69	
	A=	1000 V	_
	A -	Pnt	
Where	A=		Bottom area of trench (m ²)
	V=	96.7	runoff volume to be infiltrated (m ³)
P=K/f.s.	P=	28.8	percolation rate of native soil (mm/h)
K = 72mm/hr infiltration rate	n=	0.4	porosity of storage media (0.4 for clear stone)
f.s.= 2.5	t=	24.0	detention time (24 hours)
	A=((1000)(12.5) (12.0)(0.4)(72.0)

A= 349.6

Contact Area	0.00 m ²
Depth of clearstone	0.69 m
Trench Volume	0.00 m ³
Void ratio	0.4
Total LID Infiltration Volume	
Available	0.00 m ³

Total Imperviousness to be		
infiltrated in downstream LID	96.67	m³

Storm Chamber 2 (a+b) Infiltration Requirements

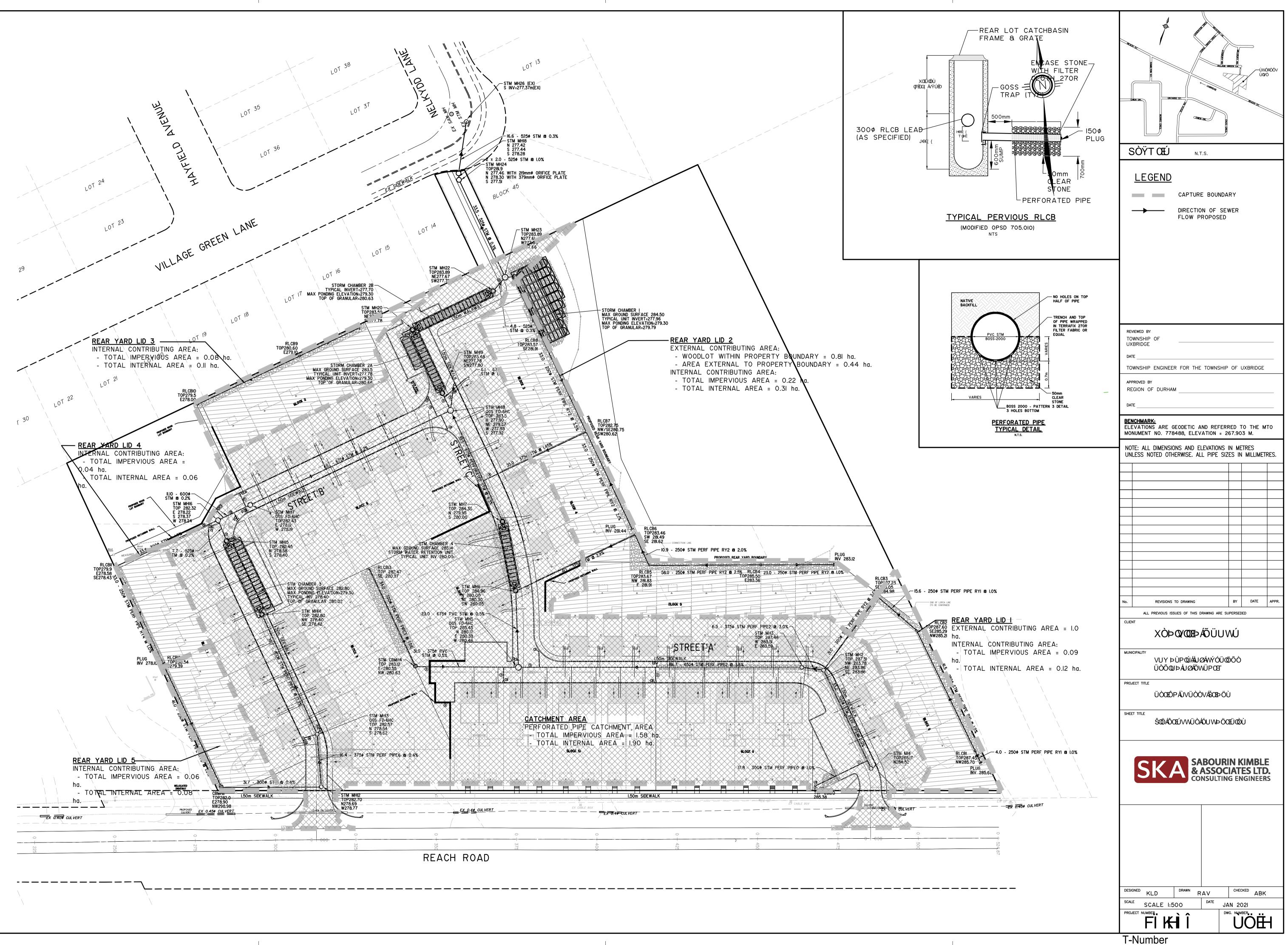
Volume to be infiltrated from Upstre Source:	am	275.16	m ³
LID capture a	area:	0.26	На
Total area of impervious	ness	1957.5	m ²
Volume to infil	trate:	40.0	mm
Volume to be infiltration	ated:	78.3	m ³
Total Target Volume Required for Infiltra		353.5	m³
Drain Down Time:	T=—	1000d P	_
Where	P=	28.8	percolation rate of native soil (mm/h)
	d=	1.38	(m)
P=K/f.s.			
K = 72mm/hr infiltration rate f.s.= 2.5	T=	47.92	detention time (Hours)

Contact Area	222.80 m ²	
Depth of clearstone	1.38 m	
Trench Volume	307.46 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	122.99 m ³	

Total Imperviousness to be		
infiltrated in downstream LID	230.47	m³

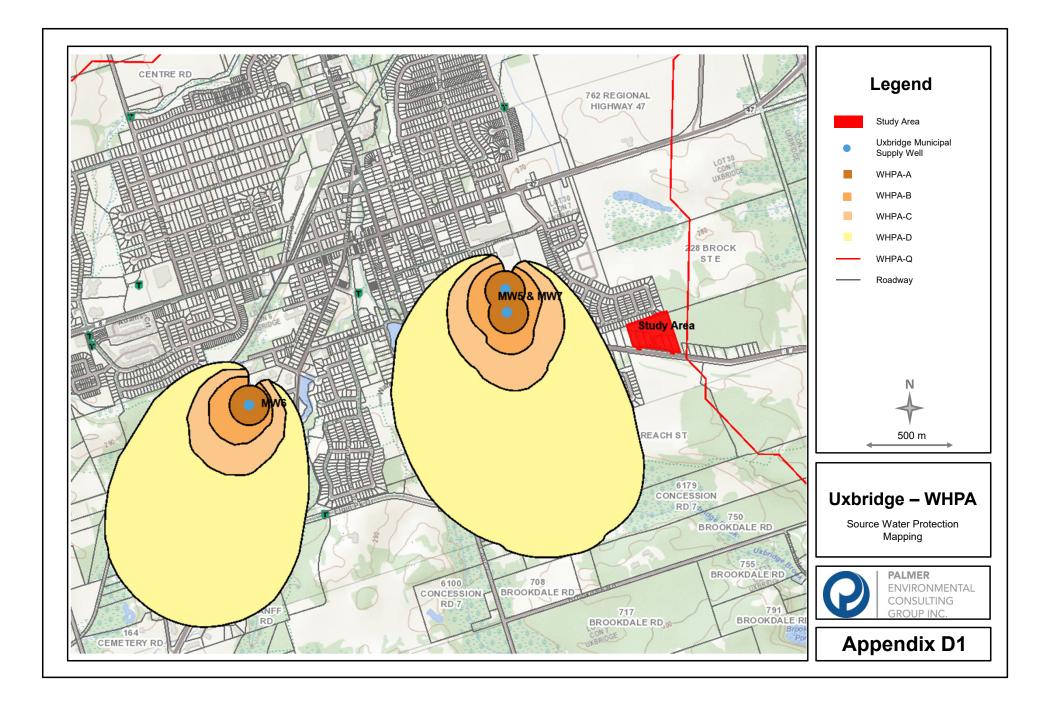
Storm Chamber 1 Infiltration Requirements

Volume to be infiltrated from Upstrea Source:	am	230.47	m ³
LID capture a	rea:	0.00	На
Total area of imperviousr	ness	0.0	m ²
Volume to infilt	rate:	40.0	mm
Volume to be infiltra	ated:	0.0	m ³
Total Target Volume Required for Infiltrat		230.5	m³
Drain Down Time:	T=	1000d P	_
Where	P=	28.8	percolation rate of native soil (mm/h)
	d=	1.4	(m)
P=K/f.s.			
K = 72mm/hr infiltration rate f.s.= 2.5	T=	47.92	detention time (Hours)


Contact Area	327.00 m ²	
Depth of clearstone	1.38 m	
Trench Volume	451.26 m ³	
Void ratio	0.4	
Total LID Infiltration Volume		
Available	180.50 m ³	

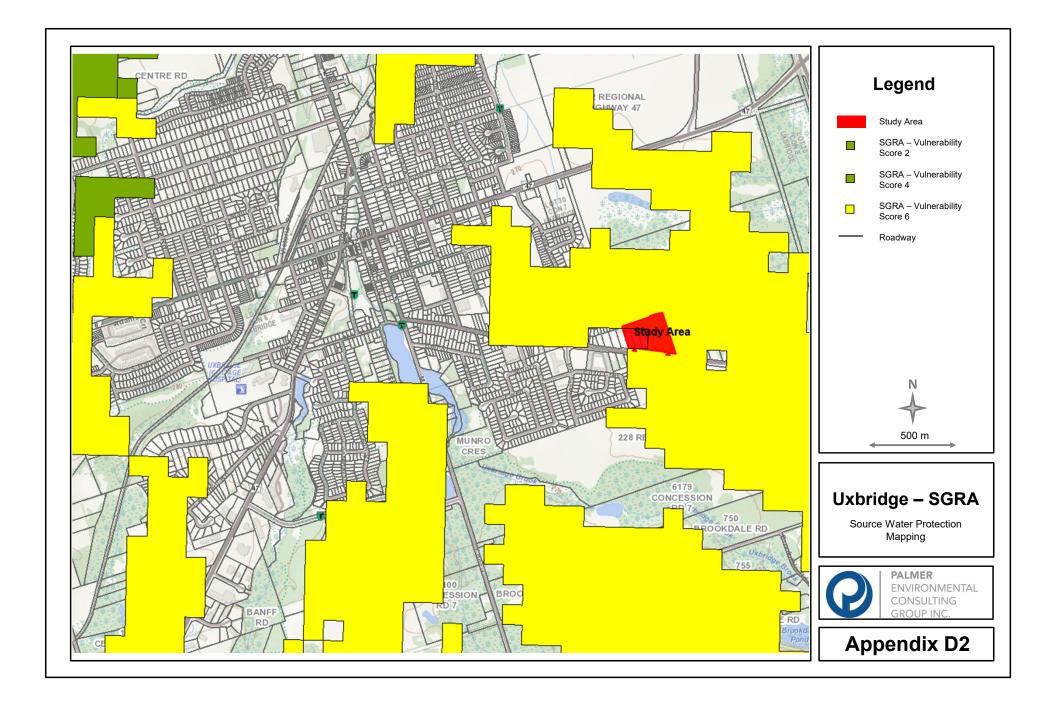
Total Imperviousness to be		
infiltrated in downstream LID	49.97	m ³

C2. Proposed LID Works (SKA, 2021)

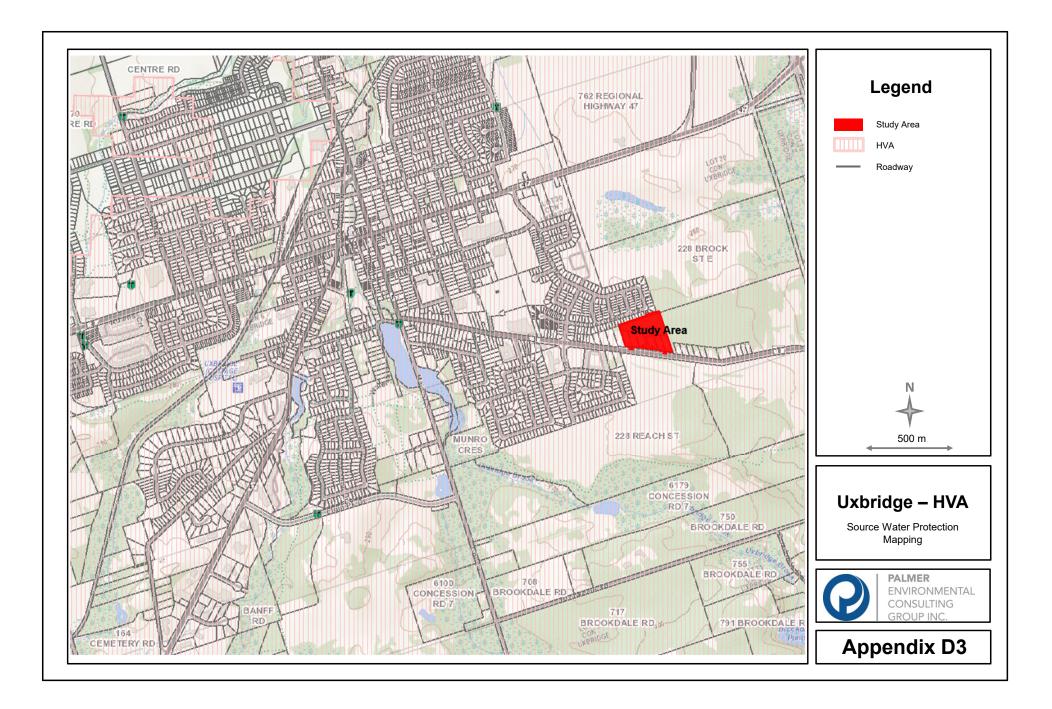

Appendix D

Source Water Protection (South Georgian Bay-Lake Simcoe Source Protection Committee, 2015)

- D1. Uxbridge Wellhead Protection Areas
- D2. Uxbridge Significant Groundwater Recharge Areas
- D3. Uxbridge Highly Vulnerable Aquifer



D1. Uxbridge – Wellhead Protection Areas



D2. Uxbridge – Significant Groundwater Recharge Areas

D3. Uxbridge – Highly Vulnerable Aquifer

Appendix E

MECP Phosphorus Budget Tool Summary (V2.0 Release Update - March 30, 2012)

Database Version: V 2.0 Release Update Update Date: 30-Mar-12

MINISTRY OF THE ENVIRONMENT

Ú¦[b^&c#ÖÒXÒŠUÚT ÒÞVÂÙ*{ { æ^

DEVELOPMENT: Uxbridge

Subwatershed: Pefferlaw-Uxbridge Brook

- 11	V[cæ\$ÁÚ¦^ĖÖ^c^ []{ ^}o^OE^æ\$Q@æ6]	3.5700	V[cæalÁÚ¦^ĖÔ^c^ []{^}oÁÚ@[•]@[¦ĭ•ÁŠ[æålÁQ;*ЦD	0.35
	VI (244A)/YEC /Y(2YII I < Y)(24)EC/24A(Q44)	5 5700	V[cæ;4AU¦^EO^c^] { ^} c4U@(•)] @ ¦`•AS[æå,4Q;*ЦD]	0.55
	V[caa+ÁÚ¦^ÉÖ^ç^ []{ ^}oÁOE^aa4Q@aaD	0.0100		0.00

Pre-Development Land Use	Area (ha)	P coeff. (kg/ha)	P Load (kg/yr)
Ø[¦^•c	FÈ	€È€H	€È
Š[,ÁQ;c^}•ãcÁÖ^ç^ []{^}c	GÈÏ	€ÈH	

POST-DEVELOPMENT LOAD

Post-Development Land Use		P coeff. (kg/ha)	Best Management Practice applied with P Remo Efficiency		P Load (kg/yr)
Ø[¦^•c	€ÈÎ	€È€H	Ù[æ\æ;æ;ê•ÁÆQ,~ajdæaaj,}Ád:^}&@•	΀Ã	€È€F

Pāt@ÁQ;c^}∙ãcÂÄÄÜ^∙ãå^}cãæ‡	FÈ	FÈHG	V¦^æa{ ^} cÁV¦æaj,ÁCE;]¦[æ&@	JÌ Ã	€ÈÉÍ
		-	See hydro	G / FSDA	S report
Pãt@ÁQtc^}●ãĉÁËÄÜ^●ãå^}cãæ‡	€ËF	FÈHG	Ú^¦-{¦æe^åÁÚã!^ÁQ-ãd;æãi}BD¢-ãd;æãi}ÂÚ^•¢^{•	ÌÏÃ	€ÈG

Ú[●dËÖ^ç^ []{^}ớŒE^æźŒĘc^\^åł	3.57		P Load
V[cæ‡Áۦ^EÖ^ç^ []{^}ớŒE^æł	3.57		(kg/yr)
W}æ⊷^&c^åÁŒ^æ	0	Ú¦^ĔÖ^ç^[[]{^}& Ú[•dĒO^ç^[[]{^}& Ô@e)*^ÁÇÚ¦^ÆĨÚ[0	0.35 3.47 -3.12

881% Net Increase in Load

- Ú[•dÊÔ^ç^|[]{ ^} oÁÇão@ÁÔT Ú•D 0.18
 - Ô@; *^ÁÇÚ¦^ÁÄÁÚ[•dD 0.17

48% Net Reduction in Load

DEVELOPMENT: Uxbridge

Subwatershed: Pefferlaw-Uxbridge Brook

CONSTRUCTION PHASE LOAD

$ \ddot{O} = aea_{1} ^{2} \dot{A} - \dot{A} \dot{O} \dot{c} = (-\hat{a} \hat{A} \dot{A}) = \hat{a} \dot{A} \dot{Q} = \hat{c} ^{2} c \otimes DK $ $ \dot{O} = aea_{1} ^{2} \dot{A} - \dot{A} \dot{O} \dot{c} = (-\hat{a} \hat{A} \dot{A}) = \hat{a} \dot{A} \dot{Q} = \hat{c} ^{2} c \otimes DK $ $ \dot{O} = \hat{a} \dot{A} \dot{A} = \hat{A} \dot{O} - \hat{a} \dot{A} \dot{A} - \hat{A} \dot{A} \dot{A} = \hat{A} \dot{O} - \hat{a} \dot{A} \dot{A} \dot{A} \dot{A} - \hat{A} \dot{A} \dot{A} = \hat{A} \dot{A} \dot{A} \dot{A} - \hat{A} \dot{A} \dot{A} = \hat{A} \dot{A} \dot{A} \dot{A} \dot{A} - \hat{A} \dot{A} \dot{A} = \hat{A} \dot{A} \dot{A} \dot{A} - \hat{A} \dot{A} \dot{A} = \hat{A} \dot{A} \dot{A} \dot{A} - \hat{A} \dot{A} \dot{A} = \hat{A} \dot{A} \dot{A} \dot{A} - \hat{A} \dot{A} \dot{A} = \hat{A} \dot{A} \dot{A} \dot{A} - \hat{A} \dot{A} - \hat{A} \dot{A} - \hat{A} \dot{A} - \hat{A} \dot{A} = \hat{A} \dot{A} \dot{A} - \hat{A} \dot{A} - \hat{A} \dot{A} - \hat{A} \dot{A} - \hat{A} \dot{A} = \hat{A} \dot{A} - \hat{A} \dot{A} - \hat{A} \dot{A} - \hat{A} - \hat{A} \dot{A} - \hat{A} - \hat{A} \dot{A} - \hat{A} - \hat{A} \dot{A} = \hat{A} - \hat{A} \dot{A} - \hat{A} $	Ùã^ËĴ^&ãããÁQ]čď		Ô[} • œ) of Dố[[\ `] } Calculation:	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sub Area: 01			
Ù [[] ^ ÁQE ^ æáç@æð K GÊ F ÓT Ú Ásæj č ¦ ^ ÁÒ ~ æð 8 & ł Ĩ €Ã à Á [[] ^ Á\ ![• a] } Á, !^ ç^ } œ] } Åæj] [ð å Á[k €Ê H ŠÙ ÁĢ [[] ^ Á\ } * œ/ k ¦ æå ð } c Aæse [1 D 0.68 Ã Á [[] ^ Á\][- Ásæj č ¦ ^ Ásæj] [ð å Á[K €Ê H ŠÙ ÁĢ [[] ^ Á\ } * c@/ k ¦ æå ð } c Aæse [1 D 0.68 Ã Á [[] ^ Á\][- Ásæj č ¦ ^ Ásæj] [ð å Á[K €Ê H Ô ÁG [¦ œ] } Á[- Á ^ æs Á[- Á ^ æs Á[aD 0.25 Ú` à , æc \ • @ å ÁÙ [ð ÁĬÚ áKÇ * Ð * DK €Ê E E Ú ÁG ! ^ c^ } œ] / ÁÉ Ásæj č !^ D 0.37 Ù ` à , æc \ • @ å ÁÙ [ð ÁĬÚ áKÇ * Ð * DK €Ê E E Ú ÁG ! ^ c^ } œ] / ÁÉ / Sæ] č !^ D 0.62.2189	Öĭ¦ææajj}Á(; ÁÔ[}∙dĭ&cajj}ÁQ;[}cO@DK	FG	ÜÁÇæaği,~æa‡lÁbákĭ}[~~Á[¦ÁŠæà^ÁÙā[&[^[J€
Ù [[] ^ ÁQE ^ æáç@æð K GÊ F ÓT Ú Ásæj č ¦ ^ ÁÒ ~ æð 8 & ł Ĩ €Ã à Á [[] ^ Á\ ![• a] } Á, !^ ç^ } œ] } Åæj] [ð å Á[k €Ê H ŠÙ ÁĢ [[] ^ Á\ } * œ/ k ¦ æå ð } c Aæse [1 D 0.68 Ã Á [[] ^ Á\][- Ásæj č ¦ ^ Ásæj] [ð å Á[K €Ê H ŠÙ ÁĢ [[] ^ Á\ } * c@/ k ¦ æå ð } c Aæse [1 D 0.68 Ã Á [[] ^ Á\][- Ásæj č ¦ ^ Ásæj] [ð å Á[K €Ê H Ô ÁG [¦ œ] } Á[- Á ^ æs Á[- Á ^ æs Á[aD 0.25 Ú` à , æc \ • @ å ÁÙ [ð ÁĬÚ áKÇ * Ð * DK €Ê E E Ú ÁG ! ^ c^ } œ] / ÁÉ Ásæj č !^ D 0.37 Ù ` à , æc \ • @ å ÁÙ [ð ÁĬÚ áKÇ * Ð * DK €Ê E E Ú ÁG ! ^ c^ } œ] / ÁÉ / Sæ] č !^ D 0.62.2189		Н		€È€G
Ù [[] ^ ÁQE ^ æáç@æð K GÊ F ÓT Ú Ásæj č ¦ ^ ÁÒ ~ æð 8 & ł Ĩ €Ã à Á [[] ^ Á\ ![• a] } Á, !^ ç^ } œ] } Åæj] [ð å Á[k €Ê H ŠÙ ÁĢ [[] ^ Á\ } * œ/ k ¦ æå ð } c Aæse [1 D 0.68 Ã Á [[] ^ Á\][- Ásæj č ¦ ^ Ásæj] [ð å Á[K €Ê H ŠÙ ÁĢ [[] ^ Á\ } * c@/ k ¦ æå ð } c Aæse [1 D 0.68 Ã Á [[] ^ Á\][- Ásæj č ¦ ^ Ásæj] [ð å Á[K €Ê H Ô ÁG [¦ œ] } Á[- Á ^ æs Á[- Á ^ æs Á[aD 0.25 Ú` à , æc \ • @ å ÁÙ [ð ÁĬÚ áKÇ * Ð * DK €Ê E E Ú ÁG ! ^ c^ } œ] / ÁÉ Ásæj č !^ D 0.37 Ù ` à , æc \ • @ å ÁÙ [ð ÁĬÚ áKÇ * Ð * DK €Ê E E Ú ÁG ! ^ c^ } œ] / ÁÉ / Sæ] č !^ D 0.62.2189	Ùĭ¦~æ&∧ÂÛ∥[]^ÁÕ¦æååN}ơÁQÃDK			€È
à Á []^Á (-Á) (-Á) (-Á) (-Á) (-A)				J€Ã
ÃÁ []^Á`}[~Á&æ]č¦^Áæ]] ð\åÁξK				
Ù`à, aɛ^¦• @ àÂÙ[¾ấÚáQ; * Đ × DK	ÃÁ [[]^Ár¦[•ā[}Áj;¦^ç^}cā[}Áæ]] a?åÁg[k	€Ĥ		0.68
Ù[ậ/Š[••ÁÇ * Ð^æD <u>662.2189</u>	ÃÁ+∥[]^Áĭ}[~~Á&æa]cč¦^Áæa]]∥ã∿åÁ4[K	€Ë		0.25
	Ùٽà, æe^¦∙@∿åÂÙ[ąী∕ÃŰá4Ç,*Ð)*DK			0.37
Ú@,•]@,¦`•ÁŠ[æåÁÇ*D 0.26			Ù[ᠯ/ᢒ͡[●● ʎ͡͡͡\$ * Đ^ æD	662.2189
			Ú@[•]@[¦˘•ÂŜ[æåÁÇ҉*D	0.26

Developed AREA (ha): ŒĒ€JJJJÌ JÍ F	Total
Construction Phase Phosphorus Load with BMPs (kg):	€ÈĜ
Construction Phase Phosphorus Load no BMPs (kg):	€ËF

SUMMARY WITH IMPLEMENTATION OF BMPs	P Load (kg/yr)
Ú¦^ËĎ^ç^ [] { ^} dK	0.35
Ô[}•dǐ&cāį}ÁÚ@æ•^ÁQĘ[¦cã^åÁJç^¦ÂÁŸ^æ•ÁK	€ÈEH
Ú[•dÊŎ^ç^ []{ ^}dK	0.18
Ú[•dËÖ^ç^ []{ ^}o/ÉÁOE[[¦cã^å/ÂÔ[}•dč8cā]}K	0.22
Pre-Development Load - Post-Development Load:	0.17
Conclusion:	48% Reduction in Load
Pre-Development Load - (Post-Development + Amortized Construction Load):	0.14
Conclusion:	39% Reduction in Load
Based on a comparison of Pre-Development and Post-Development loads, and in Construction Phase loads, the Ministry would encourage the Municipality to:	consideration of

Approve development as site specific appropriate.

Appendix F

Certificate of Analysis (ALS, 2018)

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) ATTN: Bobby Katanchi 74 Berkeley Street Toronto on M5A 2W7 Date Received:08-NOV-18Report Date:16-NOV-18 12:06 (MT)Version:FINAL REV. 2

Client Phone: 416-317-9393

Certificate of Analysis

Lab Work Order #: L2194429 Project P.O. #: NOT SUBMITTED Job Reference: 170521 C of C Numbers: 17-639640 Legal Site Desc:

Comments: 16-NOV-18 Report type revision to compare to Ontario Drinking Water standards as per client request. -A.Fazekas

Amanda Fasebas

Amanda Fazekas Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔪

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Summary of Guideline Exceedances

Guideline ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
	nking Water Regulation (ODWQS) JAN.1,2018 - Schedule 1	(Microbiological) and 2 (Chemical) Stand	dards (JAN,2018)		
ntario Drin	nking Water Regulation (ODWQS) JAN.1,2018 - Ontario DV	N Aesthetic and Operational Guidelines			
L2194429-1	241 REACH ST.	Physical Tests	Colour, Apparent	46.4	5	CU
			Turbidity	47.2	5	NTU
		Anions and Nutrients	Hardness (as CaCO3)	111	80-100	mg/L
		Dissolved Metals	Iron (Fe)-Dissolved	1.74	0.3	mg/L
			Manganese (Mn)-Dissolved	0.0998	0.05	mg/L
2194429-2	231 REACH ST.	Physical Tests	Colour, Apparent	36.0	5	CU
			Turbidity	33.2	5	NTU
		Anions and Nutrients	Hardness (as CaCO3)	304	80-100	mg/L
		Dissolved Metals	Manganese (Mn)-Dissolved	0.761	0.05	mg/L

L2194429 CONT'D.... Job Reference: 170521 PAGE 3 of 12 16-NOV-18 12:06 (MT)

Physical Tests - WATER

y = = = = = =					
			Lab ID	L2194429-1	L2194429-2
	S	amp	le Date	08-NOV-18	08-NOV-18
		San	nple ID	241 REACH ST.	231 REACH ST.
Analyte	G Unit	Guide #1	Limits #2		
Colour, Apparent	CU	-	5	46.4	36.0
Conductivity	umhos/cm	-	-	217	651
рН	pH units	-	6.5-8.5	8.17	7.89
Redox Potential	mV	-	-	251 PEHR	288 PEHR
Total Dissolved Solids	mg/L	-	500	118 DLDS	468 DLDS
Turbidity	NTU	-	5	47.2	33.2

Guide Limit #1: Schedule 1 (Microbiological) and 2 (Chemical) Standards (JAN,2018) Guide Limit #2: Ontario DW Aesthetic and Operational Guidelines

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

* Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2194429 CONT'D.... Job Reference: 170521 PAGE 4 of 12 16-NOV-18 12:06 (MT)

Anions and Nutrients - WATER

		Lab ID Sample Date Sample ID		L2194429-1 08-NOV-18 241 REACH ST.	L2194429-2 08-NOV-18 231 REACH ST.
Analyte	Unit	Guide #1	Limits #2		
Alkalinity, Bicarbonate (as CaCO3)	mg/L	-	-	113	138
Alkalinity, Carbonate (as CaCO3)	mg/L	-	-	<10	<10
Alkalinity, Hydroxide (as CaCO3)	mg/L	-	-	<10	<10
Alkalinity, Total (as CaCO3)	mg/L	-	30-500	113	138
Ammonia, Total (as N)	mg/L	-	-	0.079	0.027
Bromide (Br)	mg/L	-	-	<0.10	<0.10
Chloride (Cl)	mg/L	-	250	1.54	86.2
Computed Conductivity	uS/cm	-	-	202	629
Conductivity % Difference	%	-	-	-7.2	-3.4
Fluoride (F)	mg/L	1.5	-	0.036	0.021
Hardness (as CaCO3)	mg/L	-	80-100	111	304
Ion Balance	%	-	-	125	108
Langelier Index		-	-	0.2	0.6
Nitrate and Nitrite as N	mg/L	10.0	-	<0.022	<0.022
Nitrate (as N)	mg/L	10	-	<0.020	<0.020
Nitrite (as N)	mg/L	1	-	<0.010	<0.010
Saturation pH	pН	-	-	7.92	7.34
Orthophosphate-Dissolved (as P)	mg/L	-	-	<0.0030	<0.0030
TDS (Calculated)	mg/L	-	-	113	355
Sulfate (SO4)	mg/L	-	500	1.23	64.6
Anion Sum	me/L	-	-	1.95	6.06
Cation Sum	me/L	-	-	2.44	6.53
Cation - Anion Balance	%	-	-	11.2	3.7

Guide Limit #1: Schedule 1 (Microbiological) and 2 (Chemical) Standards (JAN,2018) Guide Limit #2: Ontario DW Aesthetic and Operational Guidelines

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2194429 CONT'D.... Job Reference: 170521 PAGE 5 of 12 16-NOV-18 12:06 (MT)

Organic / Inorganic Carbon - WATER

		Sampl	Lab ID le Date nple ID	08-NOV-18	L2194429-2 08-NOV-18 231 REACH ST.
Analyte	Unit	Guide #1	Limits #2		
Dissolved Carbon Filtration Location		-	-	LAB	LAB
Dissolved Organic Carbon	mg/L	-	5	2.02	1.39

Guide Limit #1: Schedule 1 (Microbiological) and 2 (Chemical) Standards (JAN,2018) Guide Limit #2: Ontario DW Aesthetic and Operational Guidelines

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2194429 CONT'D.... Job Reference: 170521 PAGE 6 of 12 16-NOV-18 12:06 (MT)

Inorganic Parameters - WATER

		Sample Da Sample	10 08-NOV-18 10 241 REACH ST.	08-NOV-18 231 REACH ST.
		Guida Lim	ite	
Analyte	Unit	Guide Lim #1 #2		

Guide Limit #1: Schedule 1 (Microbiological) and 2 (Chemical) Standards (JAN,2018) Guide Limit #2: Ontario DW Aesthetic and Operational Guidelines

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

* Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2194429 CONT'D.... Job Reference: 170521 PAGE 7 of 12 16-NOV-18 12:06 (MT)

Bacteriological Tests - WATER

		Sample ID	241 REACH ST.	231 REACH ST.
	G	Guide Limits	5	
Analyte	G Unit	Guide Limits #1 #2	5	

Guide Limit #1: Schedule 1 (Microbiological) and 2 (Chemical) Standards (JAN,2018) Guide Limit #2: Ontario DW Aesthetic and Operational Guidelines

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2194429 CONT'D.... Job Reference: 170521 PAGE 8 of 12 16-NOV-18 12:06 (MT)

Dissolved Metals - WATER

			ab ID	L2194429-1	L2194429-2
	Sample Date			08-NOV-18	08-NOV-18
		Sam	ple ID	241 REACH ST.	231 REACH ST.
Analyte	Unit	Guide I #1	Limits #2		
Dissolved Metals Filtration Location		-	-	FIELD	LAB
Aluminum (Al)-Dissolved	mg/L	-	0.1	<0.0050	<0.0050
Antimony (Sb)-Dissolved	mg/L	0.006	-	<0.00010	<0.00010
Arsenic (As)-Dissolved	mg/L	0.0100	•	0.00107	<0.00010
Barium (Ba)-Dissolved	mg/L	1	-	0.0369	0.0307
Beryllium (Be)-Dissolved	mg/L	-	•	<0.00010	<0.00010
Bismuth (Bi)-Dissolved	mg/L	-	-	<0.000050	<0.000050
Boron (B)-Dissolved	mg/L	5	•	<0.010	<0.010
Cadmium (Cd)-Dissolved	mg/L	0.005	-	<0.000010	<0.000010
Calcium (Ca)-Dissolved	mg/L	-	•	24.3	93.7
Chromium (Cr)-Dissolved	mg/L	0.05	-	<0.00050	<0.00050
Cobalt (Co)-Dissolved	mg/L	-	-	<0.00010	0.00098
Copper (Cu)-Dissolved	mg/L	-	1	0.00048	<0.00020
Iron (Fe)-Dissolved	mg/L	-	0.3	1.74	<0.010
Lead (Pb)-Dissolved	mg/L	0.01	-	0.000268	0.000086
Magnesium (Mg)-Dissolved	mg/L	-	-	12.2	17.0
Manganese (Mn)-Dissolved	mg/L	-	0.05	0.0998	0.761
Molybdenum (Mo)-Dissolved	mg/L	-	-	0.000690	0.000758
Nickel (Ni)-Dissolved	mg/L	-	-	<0.00050	0.00068
Phosphorus (P)-Dissolved	mg/L	-	-	<0.050	<0.050
Potassium (K)-Dissolved	mg/L	-	-	1.28	1.11
Selenium (Se)-Dissolved	mg/L	0.05	-	0.000149	0.000093
Silicon (Si)-Dissolved	mg/L	-	-	2.20	2.00
Silver (Ag)-Dissolved	mg/L	-	-	<0.000050	<0.000050
Sodium (Na)-Dissolved	mg/L	20	200	4.30	9.80
Strontium (Sr)-Dissolved	mg/L	-	-	0.0893	0.179
Sulfur (S)-Dissolved	mg/L	-	-	<5.0	21.5
Thallium (TI)-Dissolved	mg/L	-	-	<0.000010	<0.000010
Tin (Sn)-Dissolved	mg/L	-	-	0.00521	0.00195
Titanium (Ti)-Dissolved	mg/L	-	-	<0.00030	<0.00030

Guide Limit #1: Schedule 1 (Microbiological) and 2 (Chemical) Standards (JAN,2018) Guide Limit #2: Ontario DW Aesthetic and Operational Guidelines

* Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2194429 CONT'D.... Job Reference: 170521 PAGE 9 of 12 16-NOV-18 12:06 (MT)

Dissolved Metals - WATER

		Sample	ab ID Date Date ID	L2194429-1 08-NOV-18 241 REACH ST.	L2194429-2 08-NOV-18 231 REACH ST.
Analyte	Unit	Guide #1	Limits #2		
Tungsten (W)-Dissolved	mg/L	-	-	<0.00010	<0.00010
Uranium (U)-Dissolved	mg/L	0.02	-	0.000010	0.000191
Vanadium (V)-Dissolved	mg/L	-	-	<0.00050	<0.00050
Zinc (Zn)-Dissolved	mg/L	-	5	0.0187	0.583
Zirconium (Zr)-Dissolved	mg/L	-	-	<0.00030	<0.00030

Guide Limit #1: Schedule 1 (Microbiological) and 2 (Chemical) Standards (JAN,2018) Guide Limit #2: Ontario DW Aesthetic and Operational Guidelines

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Reference Information

Qualifiers for Individual Parameters Listed:

Qualifier Description			
DLDS Detection Li	imit Raised: I	Dilution required due to high Dissolved Se	olids / Electrical Conductivity.
PEHR Parameter E	Exceeded Re	commended Holding Time On Receipt: F	Proceed With Analysis As Requested.
Methods Listed (if applicab	,		
ALS Test Code	Matrix	Test Description	Method Reference**
ALK-AUTO-WT	Water	Automated Speciated Alkalinity	EPA 310.2
This analysis is carried ou	ut using proce	edures adapted from EPA Method 310.2	"Alkalinity". Total Alkalinity is determined using the methyl orange colourimetric method.
ALK-SPECIATED-WT	Water	pH Measurement for Spec. Alk	APHA 4500 H-Electrode
Water samples are analyz	zed directly b	y a calibrated pH meter.	
BR-IC-N-WT	Water	Bromide in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	yzed by Ion (Chromatography with conductivity and/or	UV detection.
CL-IC-N-WT	Water	Chloride by IC	EPA 300.1 (mod)
Inorganic anions are analy	yzed by Ion (Chromatography with conductivity and/or	UV detection.
Analysis conducted in acc	cordance with	n the Protocol for Analytical Methods Use	ed in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
COLOUR-APPARENT-WI	r Water	Colour	APHA 2120
			n-cobalt standards using the single wavelength method after sample decanting. Colour measurements can be highly p without pH adjustment. Concurrent measurement of sample pH is recommended.
DOC-WT	Water	Dissolved Organic Carbon	APHA 5310B
		ter, then injected into a heated reaction c rted in a carrier gas and is measured by a	chamber which is packed with an oxidative catalyst. The water is vaporized and the organic carbon is oxidized to carbor a non-dispersive infrared detector.
EC-MF-WT	Water	E. coli	SM 9222D
A 100 mL volume of samp	ple is filtered	through a membrane, the membrane is p	placed on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200
EC-WT	Water	Conductivity	APHA 2510 B
Water samples can be me	easured dired	ctly by immersing the conductivity cell inte	o the sample.
ETL-N2N3-WT	Water	Calculate from NO2 + NO3	APHA 4110 B
ETL-SILICA-CALC-WT	Water	Calculate from SI-TOT-WT	EPA 200.8
F-IC-N-WT	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	yzed by Ion (Chromatography with conductivity and/or	UV detection.
IONBALANCE-OP03-WT	Water	Detailed Ion Balance Calculation	APHA 1030E, 2330B, 2510A
MET-D-CCMS-WT	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)

Reference Information

ethods Listed (if applical	ale).		
ALS Test Code	Matrix	Test Description	Method Reference**
Water samples are filtere	ed (0.45 um),	preserved with nitric acid, and analyzed	by CRC ICPMS.
Method Limitation (re: Su	ılfur): Sulfide	and volatile sulfur species may not be re	ecovered by this method.
Analysis conducted in ac	cordance with	n the Protocol for Analytical Methods Us	ed in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
NH3-WT	Water	Ammonia, Total as N	EPA 350.1
Sample is measured colo	orimetrically.	When sample is turbid a distillation step	is required, sample is distilled into a solution of boric acid and measured colorimetrically.
NO2-IC-WT	Water	Nitrite in Water by IC	EPA 300.1 (mod)
Inorganic anions are ana	lyzed by lon (Chromatography with conductivity and/o	r UV detection.
NO3-IC-WT	Water	Nitrate in Water by IC	EPA 300.1 (mod)
Inorganic anions are ana	lyzed by lon (Chromatography with conductivity and/o	r UV detection.
PO4-DO-COL-WT	Water	Diss. Orthophosphate in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried o filtered through a 0.45 m			0-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field
REDOX-POTENTIAL-WT	Water	Redox Potential	APHA 2580
		nce with the procedure described in the ce electrode employed, in mV.	"APHA" method 2580 "Oxidation-Reduction Potential" 2012. Results are reported as observed oxidation-reduction
It is recommended that th	nis analysis b	e conducted in the field.	
SO4-IC-N-WT	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are ana	lyzed by lon (Chromatography with conductivity and/o	r UV detection.
SOLIDS-TDS-WT	Water	Total Dissolved Solids	APHA 2540C
		edures adapted from APHA Method 254 prmined by evaporating the filtrate to dry	0 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample ness at 180 degrees celsius.
TURBIDITY-WT	Water	Turbidity	APHA 2130 B
		on of the intensity of the light scattered be obtained from a Nephelometer.	by the sample under defined conditions with the intensity of light scattered by a standard reference suspension under the
LS test methods may inco	rporate modif	ications from specified reference metho	ds to improve performance.
Chain of Custody Numbers	:		
17-639640			
The last two letters of the a	bove test cod	e(s) indicate the laboratory that perform	ed analytical analysis for that test. Refer to the list below:
Laboratory Definition Code	e Laborat	ory Location	
WT		VIRONMENTAL - WATERLOO, ONTAF	

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Report Date: 16-NOV-18

Page 1 of 15

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street Toronto on M5A 2W7

Workorder: L2194429

Contact: Bobby Katanchi

	,							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-AUTO-WT	Water							
Batch R43 WG2928594-3	329209 CRM	WT-ALK-CRM	Λ					
Alkalinity, Total (-		86.9		%		80-120	12-NOV-18
WG2928594-4 Alkalinity, Total (DUP (as CaCO3)	L2194534-1 <10	<10	RPD-NA	mg/L	N/A	20	12-NOV-18
WG2928594-2 Alkalinity, Total (99.4		%		85-115	12-NOV-18
WG2928594-1 Alkalinity, Total (MB (as CaCO3)		<10		mg/L		10	12-NOV-18
ALK-SPECIATED-V	VT Water							
	328054							
WG2926975-12 рН	DUP	WG2926975- 7.86	11 7.85	J	pH units	0.01	0.2	09-NOV-18
WG2926975-10 рН	LCS		6.99		pH units		6.9-7.1	09-NOV-18
BR-IC-N-WT	Water							
	329247							
WG2928543-15 Bromide (Br)	DUP	WG2928543- <0.10	13 <0.10	RPD-NA	mg/L	N/A	20	12-NOV-18
WG2928543-12 Bromide (Br)	LCS		98.2		%		85-115	12-NOV-18
WG2928543-11 Bromide (Br)	МВ		<0.10		mg/L		0.1	12-NOV-18
WG2928543-14	MS	WG2928543-					0.1	12-110 - 10
Bromide (Br)	-		96.1		%		75-125	12-NOV-18
CL-IC-N-WT	Water							
Batch R43	329247							
WG2928543-15 Chloride (Cl)	DUP	WG2928543- 15.2	13 15.2		mg/L	0.0	20	12-NOV-18
WG2928543-12 Chloride (Cl)	LCS		102.0		%		90-110	12-NOV-18
WG2928543-11 Chloride (Cl)	MB		<0.50		mg/L		0.5	12-NOV-18
WG2928543-14 Chloride (Cl)	MS	WG2928543-	13 105.6		%		75-125	12-NOV-18

COLOUR-APPARENT-WT Water

Report Date: 16-NOV-18

Page 2 of 15

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street Toronto on M5A 2W7

Workorder: L2194429

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
COLOUR-APPARENT-WI	Water							
Batch R432789	6							
WG2927057-3 DUP		L2193008-1						
Colour, Apparent		4.7	4.4		CU	6.0	20	09-NOV-18
WG2927057-2 LCS								
Colour, Apparent			101.4		%		85-115	09-NOV-18
			10111		,.		00-110	03-110 - 10
WG2927057-1 MB Colour, Apparent			<2.0		CU		2	00 101/ 40
Colour, Apparent			<2.0		0		2	09-NOV-18
DOC-WT	Water							
Batch R433162	2							
WG2927299-3 DUP		L2193967-5						
Dissolved Organic Car	bon	0.60	0.53		mg/L	13	25	12-NOV-18
WG2927299-2 LCS								
Dissolved Organic Car	bon		104.6		%		70-130	12-NOV-18
WG2927299-1 MB								
Dissolved Organic Car	bon		<0.50		mg/L		0.5	12-NOV-18
WG2927299-4 MS		L2193967-5						
Dissolved Organic Car	bon	E2133307-3	107.9		%		70-130	12-NOV-18
_							10 100	
EC-MF-WT	Water							
Batch R432854	4							
WG2927043-1 MB					0.5.1// 0.0.1			
E. Coli			0		CFU/100mL		1	10-NOV-18
EC-WT	Water							
Batch R4328054	4							
WG2926975-12 DUP		WG2926975-1	1					
Conductivity		442	442		umhos/cm	0.0	10	09-NOV-18
WG2926975-10 LCS								
Conductivity			97.9		%		90-110	09-NOV-18
WG2926975-9 MB							-	
Conductivity			<3.0		umhos/cm		3	09-NOV-18
-							-	
F-IC-N-WT	Water							
Batch R432924	7							
WG2928543-15 DUP		WG2928543-1						
Fluoride (F)		0.072	0.071		mg/L	0.7	20	12-NOV-18
WG2928543-12 LCS								
Fluoride (F)			101.1		%		90-110	12-NOV-18
WG2928543-11 MB								
Fluoride (F)			<0.020		mg/L		0.02	12-NOV-18
					-			- · -

Report Date: 16-NOV-18

Page 3 of 15

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street Toronto on M5A 2W7

Workorder: L2194429

	y Ratanoni							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F-IC-N-WT	Water							
Batch R4329								
WG2928543-14 M Fluoride (F)	S	WG2928543-	• 13 101.9		%		75-125	12 NOV 49
			101.3		70		10-120	12-NOV-18
MET-D-CCMS-WT	Water							
Batch R4329	073							
	UP	WG2927669-			···· • //			
Aluminum (Al)-Diss		< 0.0050	<0.0050	RPD-NA	mg/L	N/A	20	09-NOV-18
Antimony (Sb)-Diss		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	09-NOV-18
Arsenic (As)-Dissol		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	09-NOV-18
Barium (Ba)-Dissol		0.00047	0.00046		mg/L	0.2	20	09-NOV-18
Beryllium (Be)-Diss		< 0.00010	<0.00010	RPD-NA	mg/L	N/A	20	09-NOV-18
Bismuth (Bi)-Dissol		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	09-NOV-18
Boron (B)-Dissolved		0.011	0.011		mg/L	2.9	20	09-NOV-18
Cadmium (Cd)-Diss		< 0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	09-NOV-18
Calcium (Ca)-Disso		0.545	0.551		mg/L	1.1	20	09-NOV-18
Chromium (Cr)-Dise		< 0.00050	<0.00050	RPD-NA	mg/L	N/A	20	09-NOV-18
Cobalt (Co)-Dissolv		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	09-NOV-18
Copper (Cu)-Dissol		<0.00020	<0.00020	RPD-NA	mg/L	N/A	20	09-NOV-18
Iron (Fe)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	09-NOV-18
Lead (Pb)-Dissolve		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	09-NOV-18
Magnesium (Mg)-D		0.190	0.186		mg/L	2.2	20	09-NOV-18
Manganese (Mn)-D		0.00115	0.00116		mg/L	0.9	20	09-NOV-18
Molybdenum (Mo)-I		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	09-NOV-18
Nickel (Ni)-Dissolve		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	09-NOV-18
Phosphorus (P)-Dis		<0.050	<0.050	RPD-NA	mg/L	N/A	20	09-NOV-18
Potassium (K)-Diss		0.322	0.313		mg/L	2.8	20	09-NOV-18
Selenium (Se)-Diss		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	09-NOV-18
Silicon (Si)-Dissolve		0.159	0.157		mg/L	1.0	20	09-NOV-18
Silver (Ag)-Dissolve		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	09-NOV-18
Sodium (Na)-Disso		4.24	4.19		mg/L	1.2	20	09-NOV-18
Strontium (Sr)-Diss		0.0016	0.0016		mg/L	0.3	20	09-NOV-18
Sulfur (S)-Dissolved		<0.50	<0.50	RPD-NA	mg/L	N/A	20	09-NOV-18
Thallium (TI)-Dissol	lved	<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	09-NOV-18
Tin (Sn)-Dissolved		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	09-NOV-18

Workorder: L2194429

Report Date: 16-NOV-18

Page 4 of 15

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street

Toronto on M5A 2W7

Bobby Katanchi

Contact:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R432907	3							
WG2927669-4 DUP		WG2927669-3						
Titanium (Ti)-Dissolve		<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	09-NOV-18
Tungsten (W)-Dissolve		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	09-NOV-18
Uranium (U)-Dissolved		<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	09-NOV-18
Vanadium (V)-Dissolve	ed	<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	09-NOV-18
Zinc (Zn)-Dissolved		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	09-NOV-18
Zirconium (Zr)-Dissolv	ed	<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	09-NOV-18
WG2927669-2 LCS Aluminum (Al)-Dissolv	ed		106.2		%		80-120	09-NOV-18
Antimony (Sb)-Dissolv			99.2		%		80-120	09-NOV-18
Arsenic (As)-Dissolved			102.6		%		80-120	09-NOV-18
Barium (Ba)-Dissolved	l		103.3		%		80-120	09-NOV-18
Beryllium (Be)-Dissolv			103.5		%		80-120	09-NOV-18
Bismuth (Bi)-Dissolved	1		103.1		%		80-120	09-NOV-18
Boron (B)-Dissolved			102.1		%		80-120	09-NOV-18
Cadmium (Cd)-Dissolv	ved		102.5		%		80-120	09-NOV-18
Calcium (Ca)-Dissolve	d		102.7		%		80-120	09-NOV-18
Chromium (Cr)-Dissol	ved		101.1		%		80-120	09-NOV-18
Cobalt (Co)-Dissolved			99.6		%		80-120	09-NOV-18
Copper (Cu)-Dissolved	Ł		102.2		%		80-120	09-NOV-18
Iron (Fe)-Dissolved			98.8		%		80-120	09-NOV-18
Lead (Pb)-Dissolved			104.7		%		80-120	09-NOV-18
Magnesium (Mg)-Diss	olved		104.1		%		80-120	09-NOV-18
Manganese (Mn)-Diss	olved		102.6		%		80-120	09-NOV-18
Molybdenum (Mo)-Dis	solved		101.9		%		80-120	09-NOV-18
Nickel (Ni)-Dissolved			102.1		%		80-120	09-NOV-18
Phosphorus (P)-Disso	lved		105.7		%		80-120	09-NOV-18
Potassium (K)-Dissolv	ed		106.8		%		80-120	09-NOV-18
Selenium (Se)-Dissolv	ed		100.4		%		80-120	09-NOV-18
Silicon (Si)-Dissolved			104.6		%		60-140	09-NOV-18
Silver (Ag)-Dissolved			104.4		%		80-120	09-NOV-18
Sodium (Na)-Dissolve	b		103.7		%		80-120	09-NOV-18
Strontium (Sr)-Dissolv	ed		101.3		%		80-120	09-NOV-18
Sulfur (S)-Dissolved			98.1		%		80-120	09-NOV-18

Workorder: L2194429

Report Date: 16-NOV-18

Page 5 of 15

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client: 74 Berkeley Street Toronto on M5A 2W7

Matrix	Reference	Result	Qualifier	Unite	8 bu	l imit	Analyzed
	Kelelence	Nesun	wuaiiiici	Units		Linint	
}							
l		102.0		%		80-120	09-NOV-18
		101.5		%		80-120	09-NOV-18
1		98.9		%		80-120	09-NOV-18
d		103.5		%		80-120	09-NOV-18
		106.3		%		80-120	09-NOV-18
d		103.5		%		80-120	09-NOV-18
		100.4		%		80-120	09-NOV-18
ed		99.97		%		80-120	09-NOV-18
ed		<0.0050		mg/L		0.005	09-NOV-18
ed		<0.00010		mg/L		0.0001	09-NOV-18
		<0.00010		mg/L		0.0001	09-NOV-18
		<0.00010		mg/L		0.0001	09-NOV-18
ed		<0.00010		mg/L		0.0001	09-NOV-18
		<0.00005	0	mg/L		0.00005	09-NOV-18
		<0.010		mg/L		0.01	09-NOV-18
ed		<0.00000	50	mg/L		0.000005	09-NOV-18
b		<0.050		mg/L		0.05	09-NOV-18
red		<0.00050		mg/L		0.0005	09-NOV-18
		<0.00010		mg/L		0.0001	09-NOV-18
		<0.00020		mg/L		0.0002	09-NOV-18
		<0.010		mg/L		0.01	09-NOV-18
		<0.00005	0	mg/L		0.00005	09-NOV-18
olved		<0.0050		mg/L		0.005	09-NOV-18
olved		<0.00050		mg/L		0.0005	09-NOV-18
solved		<0.00005	0	mg/L		0.00005	09-NOV-18
		<0.00050		mg/L		0.0005	09-NOV-18
ved		<0.050		mg/L		0.05	09-NOV-18
ed		<0.050		mg/L		0.05	09-NOV-18
ed		<0.00005	0	mg/L		0.00005	09-NOV-18
		<0.050		mg/L		0.05	09-NOV-18
		<0.00005	0	mg/L		0.00005	09-NOV-18
I		<0.050		mg/L		0.05	09-NOV-18
ed		<0.0010		mg/L		0.001	09-NOV-18
	I d d d d d d d d d d d d d d d d d d d	Water Wa	Water 102.0 101.5 101.5 98.9 103.5 106.3 101.5 100.4 99.97 20 20 20 20 20 21 22 23 24 25 26 20 21 22 23 24 25 26 26 27 28 29 29 20 20 20 20 20 21 22 23 24 25 26 26 27 28 29 20 20 20 20 <td>Water i 102.0 101.5 101.5 i 103.5 i 106.3 i 103.5 i 100.4 add 0.0050 add <0.00010</td> add <0.00010	Water i 102.0 101.5 101.5 i 103.5 i 106.3 i 103.5 i 100.4 add 0.0050 add <0.00010	Water 102.0 % 101.5 % 101.5 % 10.3.5 % 106.3 % 100.4 % 100.4 % 100.4 % 100.4 % 20 99.97 % 20 0.0050 mg/L 20 0.00010 mg/L 20.00010 mg/L 20.00010 mg/L 20.00010 mg/L 20.00010 mg/L 20.00010 mg/L 20.00010 mg/L 20.00050 mg/L 20.00050 mg/L 20.0010 mg/L 20.0010 mg/L 20.0010 mg/L 20.0010 mg/L 20.0010 mg/L 20.0010 mg/L	Water i 102.0 % 101.5 % 101.5 % 103.5 % 106.3 % 100.4 % 99.97 % od 100.4 % od 0.0050 mg/L od <0.00010	Water Number 1 102.0 % 80-120 101.5 % 80-120 98.9 % 80-120 106.3 % 80-120 106.3 % 80-120 106.3 % 80-120 106.4 % 80-120 100.4 % 80-120 sd 99.97 % 80-120 sd <0.0050

Workorder: L2194429

Report Date: 16-NOV-18

Page 6 of 15

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street

Toronto on M5A 2W7

Contact: Bobby Katanchi

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R4329073								
WG2927669-1 MB			0.50				0.5	
Sulfur (S)-Dissolved			<0.50	_	mg/L		0.5	09-NOV-18
Thallium (TI)-Dissolved			<0.000010	J	mg/L		0.00001	09-NOV-18
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	09-NOV-18
Titanium (Ti)-Dissolved			<0.00030		mg/L		0.0003	09-NOV-18
Tungsten (W)-Dissolved	1		<0.00010	_	mg/L		0.0001	09-NOV-18
Uranium (U)-Dissolved			<0.000010)	mg/L		0.00001	09-NOV-18
Vanadium (V)-Dissolved	1		<0.00050		mg/L		0.0005	09-NOV-18
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	09-NOV-18
Zirconium (Zr)-Dissolve	d		<0.00030		mg/L		0.0003	09-NOV-18
WG2927669-5 MS Aluminum (Al)-Dissolved	d	WG2927669-6	99.8		%		70-130	09-NOV-18
Antimony (Sb)-Dissolved			109.2		%		70-130	09-NOV-18
Arsenic (As)-Dissolved			105.0		%		70-130	09-NOV-18
Barium (Ba)-Dissolved			N/A	MS-B	%		-	09-NOV-18
Beryllium (Be)-Dissolved	b		100.5		%		70-130	09-NOV-18
Bismuth (Bi)-Dissolved			83.9		%		70-130	09-NOV-18
Boron (B)-Dissolved			96.0		%		70-130	09-NOV-18
Cadmium (Cd)-Dissolve	d		101.3		%		70-130	09-NOV-18
Calcium (Ca)-Dissolved			N/A	MS-B	%		-	09-NOV-18
Chromium (Cr)-Dissolve	ed		98.6		%		70-130	09-NOV-18
Cobalt (Co)-Dissolved			97.3		%		70-130	09-NOV-18
Copper (Cu)-Dissolved			89.5		%		70-130	09-NOV-18
Iron (Fe)-Dissolved			92.9		%		70-130	09-NOV-18
Lead (Pb)-Dissolved			97.9		%		70-130	09-NOV-18
Magnesium (Mg)-Dissol	ved		N/A	MS-B	%		-	09-NOV-18
Manganese (Mn)-Dissol	ved		N/A	MS-B	%		-	09-NOV-18
Molybdenum (Mo)-Disso	olved		97.4		%		70-130	09-NOV-18
Nickel (Ni)-Dissolved			96.1		%		70-130	09-NOV-18
Phosphorus (P)-Dissolv	ed		106.2		%		70-130	09-NOV-18
Potassium (K)-Dissolved	b		N/A	MS-B	%		-	09-NOV-18
Selenium (Se)-Dissolve	d		108.8		%		70-130	09-NOV-18
Silicon (Si)-Dissolved			N/A	MS-B	%		-	09-NOV-18
Silver (Ag)-Dissolved			101.9		%		70-130	09-NOV-18
Sodium (Na)-Dissolved			N/A	MS-B	%		-	09-NOV-18

Workorder: L2194429

Report Date: 16-NOV-18

Page 7 of 15

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street

Toronto on M5A 2W7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R4329073								
WG2927669-5 MS		WG2927669-6			0/			
Strontium (Sr)-Dissolved	1		N/A	MS-B	%		-	09-NOV-18
Sulfur (S)-Dissolved			N/A	MS-B	%		-	09-NOV-18
Thallium (TI)-Dissolved			98.2		%		70-130	09-NOV-18
Tin (Sn)-Dissolved			101.2		%		70-130	09-NOV-18
Titanium (Ti)-Dissolved			99.4		%		70-130	09-NOV-18
Tungsten (W)-Dissolved			101.3		%		70-130	09-NOV-18
Uranium (U)-Dissolved			N/A	MS-B	%		-	09-NOV-18
Vanadium (V)-Dissolved			104.4		%		70-130	09-NOV-18
Zinc (Zn)-Dissolved			92.0		%		70-130	09-NOV-18
Zirconium (Zr)-Dissolved	1		97.8		%		70-130	09-NOV-18
Batch R4329466								
WG2928798-4 DUP Aluminum (Al)-Dissolved	4	WG2928798-3 0.0072	0.0075		mg/L	4.4	20	12-NOV-18
Antimony (Sb)-Dissolved		0.00036	0.00035		mg/L	2.3	20	12-NOV-18
Arsenic (As)-Dissolved	-	0.00246	0.00245		mg/L	0.3	20	12-NOV-18
Barium (Ba)-Dissolved		0.260	0.265		mg/L	1.7	20	12-NOV-18
Beryllium (Be)-Dissolved	1	<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	12-NOV-18
Bismuth (Bi)-Dissolved	-	<0.000050	<0.000050		mg/L	N/A	20	12-NOV-18
Boron (B)-Dissolved		0.062	0.061		mg/L	0.5	20	12-NOV-18
Cadmium (Cd)-Dissolve	d	0.0000082	0.0000105	J	mg/L	0.0000023		12-NOV-18
Calcium (Ca)-Dissolved	-	53.5	52.9	5	mg/L	1.1	20	12-NOV-18
Chromium (Cr)-Dissolve	d	<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	12-NOV-18
Cobalt (Co)-Dissolved	-	0.00047	0.00047	NI DINA	mg/L	1.1	20	12-NOV-18
Copper (Cu)-Dissolved		0.00068	0.00069		mg/L	1.3	20	12-NOV-18
Iron (Fe)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	12-NOV-18
Lead (Pb)-Dissolved		<0.000050	< 0.000050	RPD-NA	mg/L	N/A	20	12-NOV-18
Magnesium (Mg)-Dissol	ved	41.2	41.1		mg/L	0.4	20	12-NOV-18
Manganese (Mn)-Dissol		0.0345	0.0343		mg/L	0.3	20	12-NOV-18
Molybdenum (Mo)-Disso		0.0115	0.0114		mg/L	0.5	20	12-NOV-18
Nickel (Ni)-Dissolved		0.00171	0.00166		mg/L	2.7	20	12-NOV-18
Phosphorus (P)-Dissolve	ed	< 0.050	<0.050	RPD-NA	mg/L	2.7 N/A	20	12-NOV-18
Potassium (K)-Dissolved		3.79	3.82		mg/L	0.8	20	12-NOV-18
Selenium (Se)-Dissolved		0.000545	0.000538		mg/L	1.3	20	
	A	0.000040	0.0000000		iiig/ L	1.5	20	12-NOV-18

Workorder: L2194429

Report Date: 16-NOV-18

Page 8 of 15

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street

Toronto on M5A 2W7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
		Reference	NESUIL	wuaiiiitti	Units	KFU	LIIIII	Anaryzeu
MET-D-CCMS-WT	Water							
Batch R432946	6	W/0000700	•					
WG2928798-4 DUP Silicon (Si)-Dissolved		WG2928798- 8.70	3 8.65		mg/L	0.6	20	12-NOV-18
Silver (Ag)-Dissolved		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	12-NOV-18
Sodium (Na)-Dissolve	d	40.3	40.4		mg/L	0.0	20	12-NOV-18
Strontium (Sr)-Dissolv	ed	0.763	0.762		mg/L	0.1	20	12-NOV-18
Sulfur (S)-Dissolved		5.96	5.82		mg/L	2.4	20	12-NOV-18
Thallium (TI)-Dissolved	d	<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	12-NOV-18
Tin (Sn)-Dissolved		0.00267	0.00269		mg/L	0.8	20	12-NOV-18
Titanium (Ti)-Dissolve	d	<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	12-NOV-18
Tungsten (W)-Dissolve	ed	<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	12-NOV-18
Uranium (U)-Dissolved	Ł	0.000737	0.000752		mg/L	2.0	20	12-NOV-18
Vanadium (V)-Dissolve	ed	0.00055	0.00055		mg/L	0.2	20	12-NOV-18
Zinc (Zn)-Dissolved		0.0012	0.0016	J	mg/L	0.0005	0.002	12-NOV-18
Zirconium (Zr)-Dissolv	ed	<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	12-NOV-18
WG2928798-2 LCS								
Aluminum (Al)-Dissolv	ed		107.4		%		80-120	12-NOV-18
Antimony (Sb)-Dissolv			93.0		%		80-120	12-NOV-18
Arsenic (As)-Dissolved	ł		102.0		%		80-120	12-NOV-18
Barium (Ba)-Dissolvec			99.5		%		80-120	12-NOV-18
Beryllium (Be)-Dissolv			103.0		%		80-120	12-NOV-18
Bismuth (Bi)-Dissolved	ł		103.7		%		80-120	12-NOV-18
Boron (B)-Dissolved			98.9		%		80-120	12-NOV-18
Cadmium (Cd)-Dissolv			102.4		%		80-120	12-NOV-18
Calcium (Ca)-Dissolve			100.4		%		80-120	12-NOV-18
Chromium (Cr)-Dissol			102.0		%		80-120	12-NOV-18
Cobalt (Co)-Dissolved			100.4		%		80-120	12-NOV-18
Copper (Cu)-Dissolved	1		101.0		%		80-120	12-NOV-18
Iron (Fe)-Dissolved			94.8		%		80-120	12-NOV-18
Lead (Pb)-Dissolved	alvad		99.5		%		80-120	12-NOV-18
Magnesium (Mg)-Diss Manganese (Mn)-Diss			106.5		%		80-120	12-NOV-18
			101.4		% %		80-120	12-NOV-18
Molybdenum (Mo)-Dis Nickel (Ni)-Dissolved	SUIVEU		102.3 99.4		%		80-120	12-NOV-18
Phosphorus (P)-Disso	lved		99.4 102.0				80-120	12-NOV-18
Filosphorus (P)-DISSO	iveu		102.0		%		80-120	12-NOV-18

Workorder: L2194429

Report Date: 16-NOV-18

Page 9 of 15

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street

Toronto on M5A 2W7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R4329466	i							
WG2928798-2 LCS								
Potassium (K)-Dissolve	ed		102.1		%		80-120	12-NOV-18
Selenium (Se)-Dissolve	ed		101.4		%		80-120	12-NOV-18
Silicon (Si)-Dissolved			103.7		%		60-140	12-NOV-18
Silver (Ag)-Dissolved			96.4		%		80-120	12-NOV-18
Sodium (Na)-Dissolved			104.9		%		80-120	12-NOV-18
Strontium (Sr)-Dissolve	ed		98.9		%		80-120	12-NOV-18
Sulfur (S)-Dissolved			96.5		%		80-120	12-NOV-18
Thallium (TI)-Dissolved			104.1		%		80-120	12-NOV-18
Tin (Sn)-Dissolved			97.9		%		80-120	12-NOV-18
Titanium (Ti)-Dissolved	l		99.8		%		80-120	12-NOV-18
Tungsten (W)-Dissolve	d		96.1		%		80-120	12-NOV-18
Uranium (U)-Dissolved			96.9		%		80-120	12-NOV-18
Vanadium (V)-Dissolve	d		103.4		%		80-120	12-NOV-18
Zinc (Zn)-Dissolved			100.7		%		80-120	12-NOV-18
Zirconium (Zr)-Dissolve	ed		97.5		%		80-120	12-NOV-18
WG2928798-1 MB								
Aluminum (Al)-Dissolve			<0.0050		mg/L		0.005	12-NOV-18
Antimony (Sb)-Dissolve	ed		<0.00010		mg/L		0.0001	12-NOV-18
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	12-NOV-18
Barium (Ba)-Dissolved			<0.00010		mg/L		0.0001	12-NOV-18
Beryllium (Be)-Dissolve	d		<0.00010		mg/L		0.0001	12-NOV-18
Bismuth (Bi)-Dissolved			<0.00005	0	mg/L		0.00005	12-NOV-18
Boron (B)-Dissolved			<0.010		mg/L		0.01	12-NOV-18
Cadmium (Cd)-Dissolv	ed		<0.00000	50	mg/L		0.000005	12-NOV-18
Calcium (Ca)-Dissolved	ł		<0.050		mg/L		0.05	12-NOV-18
Chromium (Cr)-Dissolv	ed		<0.00050		mg/L		0.0005	12-NOV-18
Cobalt (Co)-Dissolved			<0.00010		mg/L		0.0001	12-NOV-18
Copper (Cu)-Dissolved			<0.00020		mg/L		0.0002	12-NOV-18
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	12-NOV-18
Lead (Pb)-Dissolved			<0.00005	0	mg/L		0.00005	12-NOV-18
Magnesium (Mg)-Disso	lved		<0.0050		mg/L		0.005	12-NOV-18
Manganese (Mn)-Disso	lved		<0.00050		mg/L		0.0005	12-NOV-18
Molybdenum (Mo)-Diss	olved		<0.00005	0	mg/L		0.00005	12-NOV-18
Nickel (Ni)-Dissolved			<0.00050		mg/L		0.0005	12-NOV-18

Workorder: L2194429

Report Date: 16-NOV-18

Page 10 of 15

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street

Toronto on M5A 2W7

Contact: Bobby Katanchi

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R432946								
WG2928798-1 MB	•							
Phosphorus (P)-Disso	lved		<0.050		mg/L		0.05	12-NOV-18
Potassium (K)-Dissolv	ed		<0.050		mg/L		0.05	12-NOV-18
Selenium (Se)-Dissolv	red		<0.000050	0	mg/L		0.00005	12-NOV-18
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	12-NOV-18
Silver (Ag)-Dissolved			<0.000050)	mg/L		0.00005	12-NOV-18
Sodium (Na)-Dissolve	d		<0.050		mg/L		0.05	12-NOV-18
Strontium (Sr)-Dissolv	ed		<0.0010		mg/L		0.001	12-NOV-18
Sulfur (S)-Dissolved			<0.50		mg/L		0.5	12-NOV-18
Thallium (TI)-Dissolve	d		<0.000010)	mg/L		0.00001	12-NOV-18
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	12-NOV-18
Titanium (Ti)-Dissolve	d		<0.00030		mg/L		0.0003	12-NOV-18
Tungsten (W)-Dissolve	ed		<0.00010		mg/L		0.0001	12-NOV-18
Uranium (U)-Dissolved	ł		<0.000010)	mg/L		0.00001	12-NOV-18
Vanadium (V)-Dissolve	ed		<0.00050		mg/L		0.0005	12-NOV-18
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	12-NOV-18
Zirconium (Zr)-Dissolv	ed		<0.00030		mg/L		0.0003	12-NOV-18
WG2928798-5 MS		WG2928798-3						
Aluminum (Al)-Dissolv			88.8		%		70-130	12-NOV-18
Antimony (Sb)-Dissolv	ed		84.6		%		70-130	12-NOV-18
Arsenic (As)-Dissolved			93.5		%		70-130	12-NOV-18
Barium (Ba)-Dissolvec	1		N/A	MS-B	%		-	12-NOV-18
Beryllium (Be)-Dissolv	ed		89.8		%		70-130	12-NOV-18
Bismuth (Bi)-Dissolved	ł		85.2		%		70-130	12-NOV-18
Boron (B)-Dissolved			N/A	MS-B	%		-	12-NOV-18
Cadmium (Cd)-Dissolv	ved		87.6		%		70-130	12-NOV-18
Calcium (Ca)-Dissolve	ed		N/A	MS-B	%		-	12-NOV-18
Chromium (Cr)-Dissol	ved		85.8		%		70-130	12-NOV-18
Cobalt (Co)-Dissolved			83.4		%		70-130	12-NOV-18
Copper (Cu)-Dissolved	b		80.5		%		70-130	12-NOV-18
Iron (Fe)-Dissolved			82.3		%		70-130	12-NOV-18
Lead (Pb)-Dissolved			83.6		%		70-130	12-NOV-18
Magnesium (Mg)-Diss	olved		N/A	MS-B	%		-	12-NOV-18
Manganese (Mn)-Diss	olved		N/A	MS-B	%		-	12-NOV-18
Molybdenum (Mo)-Dis	solved		88.4		%		70-130	12-NOV-18

Workorder: L2194429

Report Date: 16-NOV-18

Page 11 of 15

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street

Toronto on M5A 2W7

	-							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-WT	Water							
Batch R4329466								
WG2928798-5 MS Nickel (Ni)-Dissolved		WG2928798-3	8 81.1		%		70 420	40 NOV 40
Phosphorus (P)-Dissolved	ved		93.1		%		70-130	12-NOV-18
Potassium (K)-Dissolve							70-130	12-NOV-18
			N/A	MS-B	%		-	12-NOV-18
Selenium (Se)-Dissolve	a		106.5		%		70-130	12-NOV-18
Silicon (Si)-Dissolved			N/A	MS-B	%		-	12-NOV-18
Silver (Ag)-Dissolved			96.3		%		70-130	13-NOV-18
Sodium (Na)-Dissolved			N/A	MS-B	%		-	12-NOV-18
Strontium (Sr)-Dissolve	d		N/A	MS-B	%		-	12-NOV-18
Sulfur (S)-Dissolved			N/A	MS-B	%		-	12-NOV-18
Thallium (TI)-Dissolved			82.3		%		70-130	12-NOV-18
Tin (Sn)-Dissolved			90.1		%		70-130	12-NOV-18
Titanium (Ti)-Dissolved			88.2		%		70-130	12-NOV-18
Tungsten (W)-Dissolve	d		86.5		%		70-130	12-NOV-18
Uranium (U)-Dissolved			N/A	MS-B	%		-	12-NOV-18
Vanadium (V)-Dissolve	d		89.3		%		70-130	12-NOV-18
Zinc (Zn)-Dissolved			83.4		%		70-130	12-NOV-18
Zirconium (Zr)-Dissolve	d		88.5		%		70-130	12-NOV-18
NH3-WT	Water							
Batch R4328037								
WG2927127-11 DUP		L2194429-2						
Ammonia, Total (as N)		0.027	0.026		mg/L	2.6	20	09-NOV-18
WG2927127-10 LCS			104.4		%		05 445	
Ammonia, Total (as N)			104.4		70		85-115	09-NOV-18
WG2927127-9 MB Ammonia, Total (as N)			<0.020		mg/L		0.02	09-NOV-18
WG2927127-12 MS		L2194429-2			3			
Ammonia, Total (as N)		221044202	95.5		%		75-125	09-NOV-18
NO2-IC-WT	Water							
Batch R4329247								
WG2928543-15 DUP		WG2928543-1	3					
Nitrite (as N)		<0.010	<0.010	RPD-NA	mg/L	N/A	25	12-NOV-18
WG2928543-12 LCS								
Nitrite (as N)			100.4		%		70-130	12-NOV-18
WG2928543-11 MB			0.010				0.04	
Nitrite (as N)			<0.010		mg/L		0.01	12-NOV-18

Workorder: L2194429 Report Date: 16-NOV-18 Page 12 of 15 PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client: 74 Berkeley Street Toronto on M5A 2W7 Contact: Bobby Katanchi Test Matrix Reference Result Qualifier Units RPD Limit Analyzed NO2-IC-WT Water Batch R4329247 WG2928543-13 WG2928543-14 MS % Nitrite (as N) 102.3 70-130 12-NOV-18 NO3-IC-WT Water Batch R4329247 WG2928543-15 DUP WG2928543-13 Nitrate (as N) 1.50 1.49 mg/L 0.1 25 12-NOV-18 WG2928543-12 LCS Nitrate (as N) 100.6 % 70-130 12-NOV-18 WG2928543-11 MB Nitrate (as N) < 0.020 mg/L 0.02 12-NOV-18

Nitrate (as N) 104.0 % 70-13	30 12-NOV-18
	0 12-NOV-10
PO4-DO-COL-WT Water	
Batch R4329039	
WG2927196-3 DUP L2194325-1 Orthophosphate-Dissolved (as P) 0.0120 0.0113 mg/L 6.0 30	09-NOV-18
WG2927196-2 LCS Orthophosphate-Dissolved (as P) 100.0 % 80-12	20 09-NOV-18
WG2927196-1 MB Orthophosphate-Dissolved (as P) <0.0030 mg/L 0.003	09-NOV-18
WG2927196-4 MS L2194325-1 Orthophosphate-Dissolved (as P) 106.7 % 70-13	30 09-NOV-18
REDOX-POTENTIAL-WT Water	
Batch R4328184	
WG2927241-1 DUP L2194429-2	
Redox Potential 288 270 mV 6.5 25	09-NOV-18
SO4-IC-N-WT Water	
Batch R4329247	
WG2928543-15 DUP WG2928543-13	
Sulfate (SO4) 15.8 15.8 mg/L 0.2 20	12-NOV-18
	0 12-NOV-18
WG2928543-12 LCS Sulfate (SO4) 102.6 % 90-11	
	12-NOV-18

	Quality Control Report												
			Workorder:	L219442	9	Report Date:	16-NOV-18		Page 13 of 15				
Client: Contact:	74 Berkel	ey Street on M5A 2W7	ITAL CONSULTIN	G GROUP I	NC. (Richmo	nd Hill)							
									<u> </u>				
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed				
SO4-IC-N-WT		Water											
Batch WG2928543- Sulfate (SO4			WG2928543-1	3 107.4		%		75-125	12-NOV-18				
SOLIDS-TDS-W	т	Water											
	R4329178												
WG2928378- Total Dissolv			L2193368-1 957	937		mg/L	2.1	20	11-NOV-18				
WG2928378- Total Dissolv				97.1		%		85-115	11-NOV-18				
WG2928378- Total Dissolv				<10		mg/L		10	11-NOV-18				
TURBIDITY-WT		Water											
Batch WG2927015- Turbidity	R4327723 3 DUP		L2193191-1 19.5	17.5		NTU	11	15	09-NOV-18				
WG2927015- Turbidity	2 LCS		10.0	105.0		%		85-115	09-NOV-18				
WG2927015- Turbidity	1 MB			<0.10		NTU		0.1	09-NOV-18				

Workorder: L2194429 Report Date: 16-NOV-18

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street Toronto on M5A 2W7 Contact: Bobby Katanchi

Legend:

Limit	ALS Control Limit (Data Quality Objectives)	
DUP	Duplicate	
RPD	Relative Percent Difference	
N/A	Not Available	
LCS	Laboratory Control Sample	
SRM	Standard Reference Material	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
ADE	Average Desorption Efficiency	
MB	Method Blank	
IRM	Internal Reference Material	
CRM	Certified Reference Material	
CCV	Continuing Calibration Verification	
CVS	Calibration Verification Standard	
LCSD	Laboratory Control Sample Duplicate	

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2194429

Report Date: 16-NOV-18

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street Toronto on M5A 2W7 Contact: Bobby Katanchi

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Redox Potential							
	1	08-NOV-18 08:30	09-NOV-18 15:00	0.25	30	hours	EHTR-FM
	2	08-NOV-18 08:30	09-NOV-18 15:00	0.25	30	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2194429 were received on 08-NOV-18 12:04.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Δ		، Chain of Cus Re							COC Number: 17-639640												
ALS	Environmental	Canada To	All Free: 1 800 66	58 9878		L2194429	-COF	C				Page of									
	www.alsglobal.com						- .														
Report To	Contact and company name below will appea		. <u> </u>	Report Forma	t / Distribution			Select S	ervice	Level E	Sejow -	Contact	your AN	to cont	firm all	E&P TAT	s (surcl	harges m	nay app	ply)	
Company:	PALMER ENVIROMENTA	L CONSULTING	Select Report Fo			DD (DIGITAL)		Regula			itandard [•]	~	-		_	ys - no sur	charges a	apply `			
Contact:	BOSBY KAATANCHI	· · · ·		QC) Report with Rep			Image: Second system Image: Se														
Phone:	416 317 4393 Company address below will appear on the final	report	Select Distribution	uits to Criteria on Report - Dri: EMAIL	· provide details below if		PRIORI'		Si (L	ame Day aborato	/, Week ry opei	end or ning fe	r Statuto ies may	ry holi apply)	iday [E2]	-200%		. [
Street:	74 BEAKELEY S-	t.	Email 1 or Fax 20 884@ PECG.CA					Date and Th	me Requ	uired for	all E&P '	TATs:				dd-mm	im-yy t	hh:mm			
City/Province:	TORONTO I ON			RIANC	9EC6.(A	For tests t	that can not i	be perfor	med acco	rding to t	he service	ževel selec	ted, you w	vill be con	tacted.					
Postal Code:	MASA ZWT /		Email 3			-				-			Analys	is Requ	jest				,		
Invoice To	Same as Report To] NO		Invoice Di	istribution				Indicate	Filtered	(F), Prese	erved (P)	or Filtered	and Pres	erved (F/	P) below			:	aits	<u> </u>
	Copy of Invoice with Report YES	NO	Select Invoice D	istribution:		FAX			T					·			\top			r details	1
Company:			Email 1 or Fax					-		5										further	1
Contact:		÷	Email 2	•	•					3										e fui	1
	Project Information		(Dil and Gas Require	ed Fields (client us	50)]			201/2702										provide	ľ
ALS Account #	/ Quote #:		AFE/Cost Center:		PO#		ע ו			12											1
Job #:	170521		Major/Minor Code:		Routing Code:)		5							ľ			(please	RS
PO/AFE:	· · ·	Requisitioner:							3											Ĩ	
LSD:		Location:	•				· e-	12		151					ŀ			ЧОГ	nop	1 E	
ALS Lab Work Order # (lab use only): 12194439			ALS Contact:		Sampler:			32	SNO!	100	ित्र					.			LES ON H	Sample is hazardous	NUMBER OF CONTAINERS
ALS Sample # (lab use only)	Sample Identification			Date	Time	Sample Type	1₿-		B	3	Ł							1	SAMPLI	ample	UMBE
	(This description will a	ppear on the report)		(dd-mmm-yy)	(hh:mm)	GW		* *	J	×	*						+	—	ŝ	ŝ	Ż
	131 Keach St.	•		08-11-18		GW	K	XX	I	X	X		-	-							
	<u></u>	•.	— 11	02-11-18	08:30		++		+		~		-								
				· · · · ·										-			+	_			-
···.												-		_			—	—	-		
		. =:	<u> </u>	· .			╺┿╾╸┼											_		_	┟
				·		ļ															
										1											
· · · · · · · · · · · · · · · · · · ·				-		-				1											
		··· ·		· · · · ·		-			1	+							·	-	I		
					· · ·		┿╼┽	- 1 -	1	+				+			_ 			}	
_ ·				+			++		-	+	┝╼┼		·		┥─┤		<u> </u>				
	<u> </u>								<u></u>			COND		S DEOI		(lab use	-	<u></u>		ł	Ļ
Drinkir	ng Water (DW) Samples ¹ (client use)	Special Instructions		add on report by clie ctronic COC only)	cking on the drop-d	own list below	Frozen					_	servation		Yes	(lap use	oniy)	No			
Are samples take	en from a Regulated DW System?						Ice Pac	_	_	Cubes			/ seal int		Yes	ö		No			5
	YES 🔽 NO						Cooling	lnitiated		•										-	
Are samples for	human consumption/ use?							INITO	AL COOL	ER TEN	PERATU	RES ℃			~	EINAL CO	OLER TE	EMPERATL	RES °C	:	
M	YES NO					19.	6		·			•		\mathcal{D}_{t}	11		1				
	SHIPMENT RELEASE (client use)			INITIAL SHIPMEI	NT RECEPTION (Ia	ab use only)	· / ···				2	FINAL S			CEPTIC	<u>DN'(lab i</u>	ise on	ly)			
Released by:	AN Date: Nov 8,2	ol& Time:	Received by:	63	Date:	3/18 -	Time:	Red 047	eived	^{by:} (YA	V^{-}	Da	[™] ()	8	18	_ د		Tin so:	R	$\bar{\Gamma}$
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INF			SWH	ITE - LABORATORY	COPY YELLO	W - CLIEI							-1-1		<u> </u>		<u> </u>	<u> </u>	JULY 2	017 FROM
	all portions of this form may delay analysis. Please fill in this les are taken from a Regulated Drinking Water (DW) Syst				ne Terms and Conditions	as specified on the ba	ack page of	the white - I	report co	іру.	(\mathcal{O}									

-

4