

Draft: January 12, 2022 Revised Draft: March 2, 2022 CT3058.00

Bridge Brook Corporation, 7681 Highway 27, Unit #16 Woodbridge, ON L4L 4M5

Attention: John Spina,

Re: Lake Simcoe Region Conservation Authority Comments – Hydrogeological Investigation, Water Balance, and Catchment-Based Water Balance 7370 Centre Road, Uxbridge, Ontario

Dear Mr. Spina:

Terrapex Environmental Ltd. (Terrapex) is pleased to submit this letter summarizing additional information requested by the Lake Simcoe Region Conservation Authority (LSRCA) as part of comments received, dated August 18, 2021. The comments provided to Terrapex were directed toward the report completed by Beacon Environmental Ltd. (*Hydrogeological Investigation, Water Balance, and Catchment-Based Water Balance – 7370 Centre Road, Uxbridge, Ontario* released in February of 2021).

Consultation toward the comments was carried out as a conference call with LSRCA, and Shelly Cuddy in attendance on August 31, 2021. As indicated in the appended matrix responses (as amended, originally released September 13, 2021), the LSRCA deferred several comments that rely upon the release of detailed design plans, including: H1, H4, H5, H6, H9, H12, H13, and NH4, below.

The following addresses additional information requested as part of Comments H2, H7, H8, H10, and H11. Additional hydrogeological comment are provided upon request for Comments NH1, NH3, and NH4.

Please provide geological cross section(s), including elevations of grades and groundwater levels across the site.

Response:

Please find the appended cross sections.

a) The source and period of record of the climate data used and why it varies from the annual average for the subwatershed;

The report (Beacon, 2021) sources historical Environment Canada data available for Uxbridge West weather station located approximately 5 km northeast of the subject property, using an average of three years (2018 through 2020) for the estimates. Precipitation volumes were used from 2015, 2016, 2017, 2018, 2019, and 2020 to compensate for incomplete datasets from the weather station.

b) Source of ET or how it was calculated/determined;

The report calculates the evapotranspiration using the Penman-Monteith Evapotranspiration (FAO-56 Method). Local solar radiation, incoming solar radiation, sunset hour angles, and solar declination conditions were sourced from the National Aeronautical and Space Administration Langley Research Center (NASA 2018) to estimate the monthly site-specific evapotranspiration rate.

c) Rate of precipitation (i.e. mm/yr.);

Based on the information sources above, the rates of precipitation (mm/month/m2 and mm/year/m2) are as follows:

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sept	Oct	Nov	Dec	YEAR
60.2	55.6	40.7	129.7	80.8	42.4	78.6	79.1	22.2	75.6	85.1	67.1	597.2

d) Rate of ET (mm/yr.) based on each land use type (e.g. SWM pond, forest, grass, impervious areas);

Evapotranspiration is calculated by the footprint and global position of the area, and is not based on land use (except perhaps albedo), in accordance with the Penman-Monteith Evapotranspiration (FAO-56 Method). The sources above provided the following variables to determine the ET/m2:

Mean Daily Temperature Incoming Solar Radiation Local Albedo (includes variation for snow months) Wind Speed Atmospheric Pressure Actual Vapour Pressure Solar declination Sunset hour angle Extraterrestrial Radiation Clear Sky Solar Radiation Net shortwave solar radiation Net outgoing long-wave radiation

The estimated rate of evapotranspiration (mm/month/m²) for each month as follows:

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sept	Oct	Nov	Dec	YEAR
29.2	29.1	58.5	61.6	79.6	103.5	120.2	106.0	41.0	48.9	33.5	20.2	731.3

e) Annual surplus (mm/yr.) based on each land use type

There are actually three answers for this question, because of the way it is calculated. The following are included below, for completeness:

- a) Total run-off, including snowmelt surplus from the previous month
- b) Total run-off, including snowmelt surplus from the previous month, and with frozen snow held until the next month
- *c)* Total run-off, with no consideration for stored surplus

For the purposes of the water balance estimates, the three estimate parameters provide a range where: a) is most conservative, b) is most 'realistic', and c) is most simplistic.

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo
Catchment 201	22,915	27,426	25,863	43,626	24,618	6,384	11,840	11,905	3,343	11,375	15,393	18,329
FOD4-A	40	38	0	66	7	0	0	0	0	0	45	47
MAS2-1 and SWT-2	44	42	0	73	7	0	0	0	0	0	49	53
Catchment 202	583	629	323	1,053	376	80	148	149	42	142	493	561
FODs	140	135	0	240	32	0	0	0	0	0	142	157
Catchment 203 (Wet SMP)	1,398	1,656	1,494	2,649	1,440	369	684	688	193	766	965	1,142
Catchment 204	3,849	4,615	4,382	7,334	4,164	1,082	2,006	2,017	566	1,927	2,574	3,068
Catchment 205 (Dry SMP)	376	445	399	712	385	99	183	184	52	176	260	308
Catchment 208	146	173	153	277	148	38	70	71	20	67	102	120
NHS (marsh and swamp)	193	186	0	331	44	0	0	0	0	0	196	216
NHS (FODs)	445	420	0	733	74	0	0	0	0	0	498	530
Total	30,12 <mark>9</mark>	35,764	32,616	57,093	31,295	8,051	14,931	15,013	4,215	14,454	20,716	24,531

a) Total run-off, including snowmelt surplus from the previous month:

b) Total run-off, including snowmelt surplus from the previous month, and with frozen snow held until the next month:

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo
Catchment 201	4,248	5,746	10,273	30,442	24,618	6,384	11,840	11,905	3,343	10,843	8,928	4,939
FOD4-A	7	8	0	46	7	0	0	0	0	0	26	13
MAS2-1 and SWT-2	8	9	0	51	7	0	0	0	0	0	29	14
Catchment 202	108	132	128	735	376	80	148	149	42	135	286	151
FODs	26	28	0	167	32	0	0	0	0	0	82	42
Catchment 203 (Wet SMP)	259	347	594	1,849	1,440	369	684	688	193	730	559	308
Catchment 204	714	967	1,741	5,118	4,164	1,082	2,006	2,017	566	1,837	1,493	827
Catchment 205 (Dry SMP)	70	93	159	497	385	99	183	184	52	167	151	83
Catchment 208	27	36	61	193	148	38	70	71	20	64	59	32
NHS (marsh and swamp)	36	39	0	231	44	0	0	0	0	0	113	58
NHS (FODs)	82	88	0	511	74	0	0	0	0	0	289	143
Total	5,585	7,493	12,955	39,838	31,295	8,051	14,931	15,013	4,215	13,778	12,015	6,610

c) Total run-off, with no consideration for stored surplus:

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo	m³/mo
Catchment 201	1,959	2,052	2,434	15,314	12,166	6,384	11,840	11,905	3,343	10,843	8,928	3,343
FOD4-A	5	5	0	29	0	0	0	0	0	0	26	11
MAS2-1 and SWT-2	5	6	0	32	0	0	0	0	0	0	29	12
Catchment 202	57	60	30	388	152	80	148	149	42	135	286	114
FODs	15	16	0	93	0	0	0	0	0	0	82	34
Catchment 203 (Wet SMP)	121	127	141	994	703	369	684	688	193	730	559	211
Catchment 204	328	344	412	2,573	2,061	1,082	2,006	2,017	566	1,837	1,493	558
Catchment 205 (Dry SMP)	33	34	38	251	188	99	183	184	52	167	151	57
Catchment 208	13	13	14	98	72	38	70	71	20	64	59	22
NHS (marsh and swamp)	21	23	0	128	0	0	0	0	0	0	113	47
NHS (FODs)	54	58	0	326	0	0	0	0	0	0	289	120
Total	2,611	2,739	3,070	20,225	15,342	8,051	14,931	15,013	4,215	13,778	12,015	4,530

It appears these areas maybe based on a figure in another report (Beacon, 2020) which is not include here, therefore it is unclear how each land use type corresponds to the subject site.

Please provide a pre- development figure clearly indicating all land use types used within the water balance assessments.

Response:

Please find the appended figure from Beacon, 2020.

It was noted that infiltration factors of 0.5 and 0.6 were used within the assessment however it is unclear which areas they correspond to and if the same factors were applied to both pre- and post-development conditions. Please provide a breakdown of pre- and post-development areas in which the infiltration factors correspond to.

The infiltration factors used in the pre- development conditions are indicated in the following table:

	General	Soil	Cover	Infiltration
Pre-Development Catchment Land Use	Topography	Classification	Factor	Factor
	(A)	(B)	(C)	(A+B+C)
Principle Area – (corn fields)	0.2	0.2	0.1	0.5
Mature Forest Areas (areas defined as FOD 1)	0.2	0.2	0.2	0.6
Marshes and Swamp Areas (areas defined as MAS2-1 1 and SWT-2 1)	0.2	0.2	0.1	0.5
Driveway (4 metres wide by 732 metres long)	-	-	-	-

The infiltration factors used in the post- development conditions are indicated in the following table:

	General	Soil	Cover	Infiltration
Proposed Land Uses ^{1, 2}	Topography	Classification	Factor	Factor
	(A)	(B)	(C)	(A+B+C)
Catchment 201	0.2	0.2	0.1	0.5
FOD4-A	0.2	0.2	0.2	0.6
MAS2-1 and SWT-2	0.2	0.2	0.1	0.5
Catchment 202	0.2	0.2	0.1	0.5
FODs	0.2	0.2	0.2	0.6
Catchment 203 (Wet SMP)	0.2	0.2	0.1	0.5
Catchment 204	0.2	0.2	0.1	0.5
Catchment 205 (Dry SMP)	0.2	0.2	0.1	0.5
Catchment 208	0.2	0.2	0.1	0.5
NHS (marsh and swamp)	0.2	0.2	0.1	0.5
NHS (FODs)	0.2	0.2	0.2	0.6

The post-development water balance results reported in Table 8 do not match the table within the appendix. Please amend as appropriate.

Table 8 (Beacon, 2021), referring to the Global Site-Specific Water Balance should read as follows, as indicated in **Appendix D** of the same report.

	Pre- Developme nt Conditions	Post-Development Conditions				
Component	(m³ per annum)	(m ³ per annum)	Relative Difference from Pre-Development (m ³ per annum)			
(P) Precipitation	329,905	329,905	no change			
(ET) Evapotranspiration	292,285	150,568	-141,717			
(Q _G) Infiltration	60,883	31,668	-29,215			
(Qs) Run-off	59,532	258,987	+199,455			

Additional comments:

Comment on the following additional items was requested, and are limited to a hydrogeological point of view.

NH1

Section 8.5

As per Policy 2.3.15 in the Durham Regional Official Plan (Durham OP), development and site alteration are not permitted in key natural heritage and/or hydrologic features and their associated vegetation protection zones except for the listed exceptions.

Similarly, Policy 2.3.3.3.iii.a) in the Township of Uxbridge Official Plan (Uxbridge OP), does not permit development in key natural heritage and/or hydrologic features.

As per the Durham OP and Uxbridge OP, key natural heritage features include significant habitat of endangered species, fish habitat, wetlands, significant woodlands and significant wildlife habitat, and key hydrologic features include permanent and intermittent streams, wetlands, seepage areas and springs.

Please revise the site plan to ensure all development and site alteration (including grading) is located outside the key natural heritage features, key hydrologic features, and their associated buffers on the subject property, such as the on-site wetland communities (MAM2-10, SWT2-5, MAS2-1, SWT2-2), intermittent streams (headwater drainage feature (HDF) 1, 2 and 4), and the buffers to the significant woodland, wetlands, and watercourses.

Headwater drainage features are generally defined as "non-permanently flowing drainage features that may not have defined bed or banks; they are first-order and zero-order intermittent and ephemeral channels, swales and connected headwater wetlands, but do not include rills or furrows." (TRCA,2014)

It is provided in the Wetland Function Assessment (WFA) carried out by Terrapex (2020), that features HDF2 through HDF4 are interpreted to not be influenced by groundwater, and as such, any water found in these features would be required to come from surface water sources. In contrast, HDF1 is understood to have groundwater influence, which may be permanent, and not ephemeral or intermittent. It is posited that this may remove this feature from the definition of an HDF, as provided above.

NH3

Section 6, Table 5

Please confirm whether a seep feature is present in the southwestern portion of the subject property, north of the houses on Galloway Cres. Photos of this area need to be submitted to the LSRCA or a site visit with the LSRCA should be scheduled to confirm the presence/absence of this key hydrologic feature.

The location indicated in the question is relatively proximal to the feature designated HDF1. It is provided in the Wetland Function Assessment (WFA) carried out by Terrapex (2020), that no groundwater seepage was observed on the subject property during site visits. As indicated in that report, groundwater in that area has an upward vertical gradient.

NH4

Section 7.4

As per Comment #NH1 above, wetlands, intermittent streams and seeps are considered key hydrologic features under the Durham OP and Uxbridge OP.

Please update the site plan and associated catchment-based water balance to ensure the existing hydrologic inputs supporting these sensitive hydrologic features are maintained post-development.

As discussed in the conference call with the LSRCA (August 31, 2021), further updates to the catchment-based water balance will be provided with the forthcoming detailed designs. As indicated in the above comment, a catchment-based water balance will be provided for HDF1 through HDF4.

Sincerely,

Terrapex Environmental Ltd.

DRAFT

Zen Keizars, P.Geo., FGC Senior Hydrogeologist

Appended:

H2 - Cross-sectionsH8 - Matrix ResponseMatrix Response Document

Client:	Mediterra Corp.	Prepared by: BD Checked by: JM	
N	1:8,100	Inset Map:1:50,000	

Contains information licensed under the Open Government License– Ontario Orthoim agery Baselayer: 2019 (FBS)

C:\Dropbox\Dropbox (Beacon)\All GIS Projects\2017\217431 7370 Centre Road Uxbridge EISWIXD\2020-09-02_Figure01_SiteLocation_217431.mxd

Existing Conditions

7370 Centre Road Uxbridge

Legend

- Subject Property
- ELC Communities
- Staked Dripline (LSRCA July 24, 2020)
- Staked Wetland (LSRCA July 24, 2020)
- —— Staked Top of Bank (LSRCA July 24, 2020)
- Section Divide
 - Wetlands (Beacon 2020)
 - Watercourse (Beacon 2020)

Headwater Drainage Feature

- -- Intermittent
- --- Ephemeral

Code	Community Description
	Wetland Communities
SWD3-4	Manitoba Maple Mineral Deciduous Swamp
SWD4-3	White Birch - Poplar Mineral Deciduous Swamp
MAS2-1	Cattail Mineral Shallow Marsh
SWT2-2	Willow Mineral Thicket Swamp
	Forest Communities
CUW1	Mineral Cultural Woodland
FOD3-1	Dry - Fresh Aspen Deciduous Forest
FOD4-2	Dry - Fresh White Ash Deciduous Forest
FOD7	Fresh - Moist Lowland Deciduous Forest
FOD7-2	Fresh - Moist Ash Lowland Deciduous Forest
FOD7-4	Fresh - Moist Black Walnut Lowland Deciduous Forest
	Cultural Communities
CUM1	Mineral Cultural Meadow
CUM1-1	Dry - Moist Old Field Meadow
CUP3-3	Scotch Pine Coniferous Plantation
CUT1	Mineral Cultural Thicket
	Other Communities
AG	Agricultural
ANT	Anthropogenic

Project: 217431 ENVIRONMENTAL Last Revised: August 2020								
Client:	Mediterra	Corp.	Prepared by: Bl Checked by: TD	DH DRAFT				
z	1:4,100 0 80 160 m							
Contains	information lic Ontario Orth	ensed und noimagery	er the Open Gover Baselayer: 2019 (F	nment License– FBS)				

1	H1		
	The FSSR indicates the site area is 39.9 ha whereas the Hydrogeological Investigation indicates 40.3 ha. Please ensure site areas are consistent within all the reports.	Terrapex	Have confirmed this area with team, and forthcoming reports with detailed design will be updated with the 39.9 ha value.

2	H2	Terrapex	Cross-sections will be included
	Please provide geological cross		in subsequent reports.
	section(s), including elevations of grades		A Letter has been completed by
	and groundwater levels across the site.		Terrapex (2022) which includes
			this information.

3	Н3	Terrapex	It is understood that the
			Wetland Function Assessment
	The report notes that as a result of a site		(Terrapex, 2020) will be
	Visit on August 22, 2019 no obvious		included in subsequent
	groundwater-dependent features or		submissions.
	seepage areas were observed on the		
	site. an impact assessment on both the		The Terrapex report provides a
	north-central and southeast features		groundwater assessment of the
	have not been included within the		following four features, to
	report. However, there is reference		determine if features are
	made regarding the assessment of		functioning as groundwater
	wetland functions in a report by		headwaters or as surfacewater
	Terrapex (2020). This report was not		collection areas:
	provided with the 1st submission and		
	therefore it's unclear if it adequately		
	addresses the potential impact to both		(2) HDF2
	these features in post-development		
	conditions. Please provide a		(3) HDF3
	groundwater assessment for all natural		(4) HDF4
	features on the site.		
			As indicated in the Terrapex
			report, only HDF1 (south-
			central property line) was
			found to have an upward
			vertical gradient from
			groundwater.

4	H4	Terrapex	To be addressed at detailed
	A water balance was completed for the entire site, however the FSSR indicates that the development will consist of 2 phases. As such, the water balance for each phase will need to be completed and addressed through each application separately.		design, per call with LSRCA (31Aug2021)

5	Н5	Terrapex	Additional FBWBs to be
	A catchment-based water balance was provided for the watercourse at the SE corner of the site. The catchment used in the assessment appears to coincide with drainage catchment 101 from the FSSR and the general groundwater flow direction across the site. From the information provided it is unclear which drainage catchment supports the wetland at the north end of the site.		addressed, if required, at detailed design, per call with LSRCA (31Aug2021)
	A pre- and post-development catchment-based (a.k.a. feature-based) water balance is required for all features that will remain on the site and should include an impact assessment of changes to those features. Please clearly identify the drainage catchments for all natural features on the site and quantify the amount of groundwater/surface water which supports them.		

6	H6	Terrapex	To be addressed, at detailed
	The majority of both groundwater and surface flows are shown to be directed to the wetland and water course at the southeast corner of site. There is no assessment on how the proposed infrastructure (e.g. large impervious stormwater management pond) may change local groundwater flow patterns or impact discharge (baseflow) or overland flow to these features.		design, per call with LSRCA (31Aug2021)
	Please provide more information on how the flow to the features will be maintained post-development without having an impact on the current function.		

7	Н7	Terrapex	As requested, datasources will be
	Section 4.1		outlined in greater detail in the next release.
	It appears some information regarding the climate data source has been omitted or accidently clipped from the report. The annual average precipitation for Uxbridge Brook subwatershed is 892 mm/yr. which appears to vary from the rate used within the assessment. Please provide more information on the source climate data used in the water balance assessment, including:		A Letter has been completed by Terrapex (2022) which includes this information.
	a) The source and period of record of the climate data used and why it varies from the annual average for the subwatershed;		
	 b) Source of ET or how it was calculated/determined; 		
	c) Rate of precipitation (i.e. mm/yr.);		
	d) Rate of ET (mm/yr.) based on each land use type (e.g. SWM pond, forest, grass, impervious areas); and		
	e) Annual surplus (mm/yr.) based on each land use type		

Table 6the landuse types will be outlined in greater detail in the next release.Table 6 provides a breakdown of land use types used within the pre- development water balance assessment. It appears these areas maybe based on a figure in another report (Beacon, 2020) which is not include here, therefore it is unclear how each land use type corresponds to the subject site. Please provide a pre- development figure clearly indicating all land use types used within the waterA Letter has been completed by Terrapex (2022) which includes this information.	8	H8	Terrapex	As requested, a figure indicating
balance assessments.	0	Table 6 Table 6 provides a breakdown of land use types used within the pre- development water balance assessment. It appears these areas maybe based on a figure in another report (Beacon, 2020) which is not include here, therefore it is unclear how each land use type corresponds to the subject site. Please provide a pre- development figure clearly indicating all land use types used within the water balance assessments.		the landuse types will be outlined in greater detail in the next release. A Letter has been completed by Terrapex (2022) which includes this information.

9	Н9	Terrapex	To be addressed, at detailed
	Table 7		design, per call with LSRCA (31Aug2021)
	Table 7 provide a breakdown of		
	impervious/pervious areas as sourced		
	from the FSSR (SCS, 2020). Please		
	provide an additional preliminary		
	breakdown (to be further refined at		
	detailed design) of the types of land		
	uses (e.g. roads, driveways, roofs, parks,		
	lawns, NHS, stormwater ponds, etc.)		
	along with a post-development figure		
	clearly indicating all land use types.		

10	H10	Terrapex	As requested, this will be outlined
	It was noted that infiltration factors of 0.5 and 0.6 were used within the assessment however it is unclear which areas they correspond to and if the same factors were applied to both pre- and post-development conditions. Please provide a breakdown of pre- and post-development areas in which the infiltration factors correspond to.		in greater detail in the next release. A Letter has been completed by Terrapex (2022) which includes this information.

11	H11	Terrapex	As requested, this will be
	Table 8 The post-development water balance results reported in Table 8 do not match the table within the appendix. Please amend as appropriate.		addressed in the next release. A Letter has been completed by Terrapex (2022) which includes this information.

12	H12	Terrapex	This will require input from the
12	Both the FSSR and balance assessment indicate the stormwater management blocks (203 and 205) are 50% pervious. However, the elevations shown on FSSR Figures 2.4 and 2.5 indicate both ponds are several metres lower than the groundwater levels (obtained from the closest monitoring wells BH7 & BH11). Ponds intercepting the water table should have an impermeable liner which would make them 100% impervious within the water balance assessment. Please clearly show pervious/impervious areas on a water balance figure as noted above and adjust the water balance calculations as necessary.		FSSR team, and will be addressed in detailed design releases.

13	H13	Terrapex	This will require input from the
	Table 9		FSSR team, and will be addressed in detailed design releases.
	Table 9 notes that infiltration-based LIDs		
	will increase infiltration by 99,363		
	m3/yr. There is no information on how		
	this volume was determined.		
	Preliminary calculations on BMP sizing		
	within the FSSR shows that		
	approximately 1/3 of the infiltration		
	deficit can be mitigated through the		
	various infiltration trenches proposed		
	for the site. Please provide more		
	information including calculations		
	demonstrating how much infiltration is		
	achieved by each LID.		

15	H15	Terrapex	To be addressed, at detailed
	Three infiltration tests were completed at Bh6, Bh7 and BH11 indicating rates of 42 to 49 mm/hr. Once the site plan has been confirmed further testing will need to be conducted at the location(s) and bottom elevation(s) of all proposed infiltration -based facilities.		design, per call with LSRCA (31Aug2021)

16	H16	Terrapex	This will require input from the
	Example cross sections have been provided for infiltration LID (i.e. Rear yard infiltration trenches), however it is unclear how these relate to the soils and the seasonally high groundwater levels across the site. Please provide cross sections of all proposed infiltration LIDs including proposed ground elevations, highest groundwater elevations, dimensions and materials.		FSSR team, and will be addressed with detailed design release

Environmental Impact Study

Section 8.5

As per Policy 2.3.15 in the Durham Regional Official Plan (Durham OP), development and site alteration are not permitted in key natural heritage and/or hydrologic features and their associated vegetation protection zones except for the listed exceptions. Similarly, Policy 2.3.3.3.iii.a) in the Township of Uxbridge Official Plan (Uxbridge OP), does not permit development in key natural heritage and/or hydrologic features. As per the Durham OP and Uxbridge OP, key natural heritage features include significant habitat of endangered species, fish habitat, wetlands, significant woodlands and significant wildlife habitat, and key hydrologic features include permanent and intermittent streams, wetlands, seepage areas and springs. Please revise the site plan to ensure all development and site alteration (including grading) is located outside the key natural heritage features, key hydrologic features, and their associated buffers on the subject property, such as the on-site wetland communities (MAM2-10, SWT2-5, MAS2-1, SWT2-2), intermittent streams (headwater drainage feature (HDF) 1, 2 and 4), and the buffers to the significant woodland, wetlands, and watercourses.

In keeping with the general definition of HDFs as "nonpermanently flowing drainage features that may not have defined bed or banks; they are first-order and zero-order intermittent and ephemeral channels, swales and connected headwater wetlands, but do not include rills or furrows." (TRCA,2014)

It is provided in the Wetland Function Assessment (WFA) carried out by Terrapex (2020), that features HDF2 through HDF4 are interpreted to not be influenced by groundwater, and as such, any firstorder or zero-order water found in these features would be required to come from surface water sources.

It is provided in the Wetland Function Assessment (WFA) carried out by Terrapex (2020), that features HDF2 through HDF4 are interpreted to not be influenced by groundwater, and as such, any water found in these features would be required to come from surface water sources. In contrast, HDF1 is understood to have groundwater influence, which may be permanent, and not ephemeral or intermittent. It is posited that this may remove HDF1 from the definition of an HDF, as provided above.

3	Section 6, Table 5 Please confirm whether a seep feature is present in the southwestern portion of the subject property, north of the houses on Galloway Cres. Photos of this area need to be submitted to the LSRCA or a site visit with the LSRCA should be scheduled to confirm the presence/absence of this key hydrologic feature.		It is understood that the location indicated in the question is relatively proximal or to the west of the feature designated HDF1. It is provided in the Wetland Function Assessment (WFA) carried out by Terrapex (2020), that no groundwater seepage was observed on the subject property during site visits. As indicated in that report, groundwater in that area has an upward vertical gradient.
---	--	--	---

4 Section 7.4

As per Comment #NH1 above, wetlands, intermittent streams and seeps are considered key hydrologic features under the Durham OP and Uxbridge OP. Please update the site plan and associated catchment-based water balance to ensure the existing hydrologic inputs supporting these sensitive hydrologic features are maintained post-development. As discussed in the conference call with the LSRCA (August 31, 2021), further updates to the catchmentbased water balance will be provided with the forthcoming detailed designs.

It is understood that this reiterates the need communicated by the LSRCA for a catchment-based water balance to be provided for each of HDF1 through HDF4. 347 Pido Road , Unit #29 Peterborough, Ontario K9J 6X7 Canada www.ghd.com

28 May 2021

Mr. John Spina MDTR Group 7681 Highway 27, Unit 16 Woodbridge, Ontario L4L 4M5

Re: 7370 Centre Road Plan of subdivision application Town of Uxbridge

Bat Habitat Assessment Memo

1. Introduction

GHD Limited was asked to conduct a bat cavity tree assessment on the property at 7370 Centre Road in the Town of Uxbridge. The Environmental Impact Study conducted previously here by another consulting firm noted that bat roosting habitat may be present in the wooded areas on the property. As some tree removal is proposed in the development plan for this site, GHD biologists conducted a thorough search for suitable cavity trees on the property on April 27, 2021.

2. Methodology

The Methodology used in the bat habitat survey was based on protocols set out in *Bats and Bat Habitats: Guidelines for Wind Power Projects (OMNR 2011)* and *Bat and Bat Habitat Surveys of Treed Habitats* (OMNRF- Guelph District 2016). The wooded areas on the site where small and GHD biologists were able observe all trees growing/standing in these areas. Most of the site was open agricultural fields with extensive treed fence rows running east to west along the north and south property lines. These lines were walked, and any potential bat roosting trees were identified and evaluated. The wooded areas checked are shown on figure 1 in orange shading.

3. Results

Transects through the wooded areas of site reveled no candidate bat roosting trees. The coniferous forested areas were composed primarily of young healthy Scot's pine (*Pinus sylvestris*) and similarly most of the deciduous trees were young and in good health. These characteristics do not provide for suitable bat roosting habitat. Those types of trees have small diameters and do not have knot holes or cavitites. Several butternut trees (>25cm. dbh) were identified here in various stages of decline but none showed any evidence of peeling bark, cracks, or cavities. Twelve trees (>25cm dbh) scattered along the periphery of the property were identified as potential bat roosting habitat (Figure 1). Ten of these trees were recently deceased white ash (*Fraxinus alba*) and were starting to show some peeling bark. One black walnut (*Juglans nigra*), also recently deceased, displayed

patches of loose bark. None of these trees contained open cavities, knot holes or fissures. One Manitoba maple (*Acer negundo*) containing cavities was located within a fence line. This individual tree was in late stages of decay and had broken off at the four-meter mark. Surrounded by buckthorn (*Rhamnus cathartica*), this individual tree was providing shelter to a raccoon (*Procyon loter*).

4. Conclusions

While no minimum number of snags per hectare exists to qualify an area as important habitat to species at risk bats, MNRF suggests that more than10 snags per hectare may be considered high quality candidate maternity roost habitat. Snag density calculations for this property do not support this parameter. The individual snag trees identified on the site appeared to be of poor quality (no cavities, cracks or fissures, only some loose bark, or cavities that were low on the tree) to be suitable as candidate trees for maternity colonies. Hazard trees, example the dead ash or walnut, should be removed as they can pose a hazard during construction and for residents. Several of the trees were on the road alignment for the connector roadway. In addition, it is recommended that one Rocket brand bat boxes be installed around the natural areas, eg. adjacent to the stormwater pond, to provide an opportunity for roosting bats.

Sincerely,

GHD

Chris Ellingwood Sr. Biologist

705-931-3929 Chris.ellingwood@ghd.com

→ The Power of Commitment

Background Data

Administrative Property Limit Geographic Lot Fabric Boundary GHD Surveys 0 Snag Tree Decay Codes 4 and 5. Wandering Transect 2021-04-27

CITATIONS

- Beacon Environmental. Proposed Development (GIS Layer). Derived from Figure 4; Proposed Development. 2021.
- Beacon Environmental. Watercourse and Headwater Drainage Features (GIS Layer). Derived from Figure 3: Environmental Constraints.
- Beacon Environmental. Staked Dripline (GIS Layer). Derived from Figure 3: Environmental Constraints.
- Service Layer Credits: © 2020 Regional Municipality of Durham; 2020 Orthophotography provided by © First Base Solutions Inc.; © Queen's Printer for Ontario, 2020.

Map Projection: Transverse Mercator Horizontal Datum: North American 1983 Grid: NAD 1983 UTM Zone 17N Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry® Queen's Printer for Ontario, 2021(2020). SCALE 1 cm : 30 meters 0 10 20 30 40

REVISION & WORK HISTORY

Document Path: Q1gis2)GISIPROJECTSi11227000s111227711Layouts1202105_RPT001111227711_202105_RPT001_GIS001 - Snag Tree Locations.mxd Date Saved: 6/10/2021 5.06:31 PM

BAT MEMO SNAG TREE LOCATIONS

11227711 Project No. Revision No. 6/10/2021 Date

FIGURE 1

Dry SWM Pond Extended Detention Sizing

RESPONSE TO COMMENT E11

7370 Centre Road Project Number: 2099 Date: September 2021 Designer Initials: C.M.D.

EXTENDED DETENTION

Using the 25mm - 4 hour Chicago Storm

Using 40m ³ /ha			
C	Extended Detention Volume (V) = 40r	(ha)	
	Extended Detention Volume (V) =	40 m³/ha	6.24 ha
	Extended Detention Volume (V) =	249.6 m ³	
	Governing Volume (V) =	1353 m ³	

OUTFLOW SUMMARY DRY SWM POND 1

7370 Centre Road Project Number: 2099 Date: September 2021 Designer Initials: C.M.D.

Starting Water Level (m) = 284.17 Elevation Increment (m) = 0.02

RESPONSE TO
COMMENT E11

Shading represents Storage-Discharge pairings used in VO modelling

Unotroom	Orifice 1	Emorgonov Cnillwov	Wair 4	Stage	Total	Storage	Detention		
Elevation	Outflow	Emergency Spillway	Outflow	Stage	Flow	Storage	Timo	4 Hour Chicago	12 Hour SCS
(m)	(cms)	(cms)	(cms)	(m)	(cms)	(m ³)	(hrs)	Storm	Storm
284 17	0.000	0.000	0.000	284 17	0.000	0	0.0	Orific	e 1
284.19	0.000	0.000	0.000	284.19	0.000	0	0.0	011110	
284.21	0.001	0.000	0.000	284.21	0.001	0	0.0		
284.23	0.002	0.000	0.000	284.23	0.002	0	0.0		
284.25	0.003	0.000	0.000	284.25	0.003	0	0.0		
284.27	0.004	0.000	0.000	284.27	0.004	0	0.0		
284.29	0.005	0.000	0.000	284.29	0.005	2	0.1		
284.31	0.005	0.000	0.000	284.31	0.005	4	0.3		
284.35	0.000	0.000	0.000	284.35	0.000	17	0.0		
284.37	0.007	0.000	0.000	284.37	0.007	28	1.3		
284.39	0.007	0.000	0.000	284.39	0.007	42	1.8		
284.41	0.008	0.000	0.000	284.41	0.008	58	2.5		
284.43	0.008	0.000	0.000	284.43	0.008	77	3.1		
284.45	0.008	0.000	0.000	284.45	0.008	99	3.8		
284.47	0.009	0.000	0.000	284.47	0.009	123	4.6		
284.49	0.009	0.000	0.000	284.49	0.009	149	5.4		
204.51	0.009	0.000	0.000	204.01	0.009	205	0.2		
264.55	0.010	0.000	0.000	284.55	0.010	205	7.1		
284.57	0.010	0.000	0.000	284.57	0.010	264	8.7		
284.59	0.011	0.000	0.000	284.59	0.011	293	9.5		
284.61	0.011	0.000	0.000	284.61	0.011	323	10.2		
284.63	0.011	0.000	0.000	284.63	0.011	353	11.0		
284.65	0.012	0.000	0.000	284.65	0.012	384	11.7		
284.67	0.012	0.000	0.000	284.67	0.012	414	12.4		
284.69	0.012	0.000	0.000	284.69	0.012	445	13.2		
284.71	0.012	0.000	0.000	284.71	0.012	4//	13.9		
284.75	0.013	0.000	0.000	204.75	0.013	500	14.0		
284 77	0.013	0.000	0.000	284 77	0.013	573	16.0		
284.79	0.013	0.000	0.000	284.79	0.013	605	16.7		
284.81	0.013	0.000	0.000	284.81	0.013	638	17.4		
284.83	0.014	0.000	0.000	284.83	0.014	671	18.0		
284.85	0.014	0.000	0.000	284.85	0.014	704	18.7		
284.87	0.014	0.000	0.000	284.87	0.014	738	19.4		
284.89	0.014	0.000	0.000	284.89	0.014	772	20.0		
284.91	0.015	0.000	0.000	284.91	0.015	806	20.7		
204.95	0.015	0.000	0.000	284.95	0.015	875	21.3		
284.97	0.015	0.000	0.000	284.97	0.015	911	22.6	2 Year	
284.99	0.015	0.000	0.000	284.99	0.015	946	23.3	2100	
285.01	0.016	0.000	0.000	285.01	0.016	982	23.9		
285.03	0.016	0.000	0.000	285.03	0.016	1018	24.6		
285.05	0.016	0.000	0.000	285.05	0.016	1054	25.2		
285.07	0.016	0.000	0.000	285.07	0.016	1090	25.8		2 Year
285.09	0.016	0.000	0.000	285.09	0.016	1127	26.5		
285.11	0.017	0.000	0.000	285.11	0.017	1164	27.1		
285 15	0.017	0.000	0.000	285 15	0.017	1240	28.3	Wei	r 1
285.17	0.017	0.000	0.007	285.17	0.024	1278	28.9		
285.19	0.017	0.000	0.019	285.19	0.036	1316	29.2	5 Year	
285.21	0.017	0.000	0.034	285.21	0.052	1355	29.5	Extended [Detention
285.23	0.018	0.000	0.053	285.23	0.070	1393	29.6		
285.25	0.018	0.000	0.074	285.25	0.091	1433	29.8	10 Year	5 Year
285.27	0.018	0.000	0.097	285.27	0.115	1472	29.9		
285.29	0.018	0.000	0.122	285.29	0.140	1512	30.0		
200.01	0.010	0.000	0.149	200.01	0.107	1502	30.0	25 Vear	
285.35	0.019	0.000	0.215	285.35	0.233	1633	30.2	20 1001	10 Year
285.37	0.019	0.000	0.248	285.37	0.266	1674	30.2		
285.39	0.019	0.000	0.282	285.39	0.301	1715	30.2		
285.41	0.019	0.000	0.318	285.41	0.337	1757	30.3		
285.43	0.019	0.000	0.356	285.43	0.375	1798	30.3		25 Year
285.45	0.019	0.000	0.426	285.45	0.446	1841	30.3		
285.47	0.020	0.000	0.470	285.47	0.489	1883	30.4	100 Voor	
200.49	0.020	0.000	0.514	285 51	0.534	1920	30.4 30.4	TUU Year	
285.53	0.020	0.000	0.608	285.53	0.628	2012	30.4		

OUTFLOW SUMMARY DRY SWM POND 1

Starting Water Level (m) = 284.17 Elevation Increment (m) = 0.02

Unotroom	Orifice 1	Emergency Spillway	Weir 4	Store	Total	Ctorogo	Detention		
Elevation	Outflow	Emergency Spinway	Outflow	Stage	Flow	Storage	Timo	4 Hour Chicago	12 Hour SCS
(m)	(cms)	(cms)	(cms)	(m)	(cms)	(m ³)	(hrs)	Storm	Storm
285.55	0.020	0.000	0.683	285 55	0.703	2055	30.4		
285.57	0.020	0.000	0.735	285.57	0.755	2099	30.5		
285.59	0.020	0.000	0.788	285.59	0.809	2143	30.5		100 Year
285.61	0.021	0.000	0.842	285.61	0.863	2188	30.5		
285.63	0.021	0.000	0.898	285.63	0.919	2232	30.5		
285.65	0.021	0.000	0.965	285.65	0.986	2278	30.5		
285.67	0.021	0.000	1.024	285.67	1.045	2323	30.5		
285.69	0.021	0.000	1.083	285.69	1.105	2368	30.5		
285.71	0.021	0.000	1.144	285.71	1.165	2414	30.6		
285.73	0.022	0.000	1.206	285.73	1.227	2460	30.6		
285.75	0.022	0.000	1.276	285.75	1.297	2507	30.6		
285.77	0.022	0.000	1.340	285.77	1.362	2554	30.6		
285.79	0.022	0.000	1.405	285.79	1.427	2601	30.6		
203.01	0.022	0.000	1.472	200.01	1.494	2048	30.0		
285.85	0.022	0.000	1.559	285.85	1.630	2030	30.6		
285.87	0.022	0.000	1.677	285.87	1 700	2792	30.6		
285.89	0.022	0.000	1.747	285.89	1.770	2840	30.6		
285.91	0.023	0.000	1.819	285.91	1.841	2889	30.6		
285.93	0.023	0.000	1.891	285.93	1.914	2938	30.7		
285.95	0.023	0.000	1.964	285.95	1.987	2988	30.7		
285.97	0.023	0.000	2.038	285.97	2.061	3037	30.7		
285.99	0.023	0.000	2.113	285.99	2.137	3087	30.7		
286.01	0.023	0.000	2.189	286.01	2.213	3137	30.7		
286.03	0.024	0.000	2.266	286.03	2.290	3188	30.7		
286.05	0.024	0.000	2.344	286.05	2.367	3239	30.7		
286.07	0.024	0.000	2.422	286.07	2.446	3290	30.7		
286.09	0.024	0.000	2.502	286.09	2.526	3341	30.7		
286.11	0.024	0.000	2.582	286.11	2.606	3393	30.7		
280.13	0.024	0.000	2.003	280.13	2.087	3445	30.7		
200.15	0.024	0.000	2.745	200.15	2.709	3497	30.7		
200.17	0.024	0.000	2.020	286 10	2.002	3603	30.7		
286.21	0.025	0.000	2.996	286 21	3 020	3656	30.7		
286.23	0.025	0.000	3 081	286.23	3 106	3709	30.7		
286.25	0.025	0.000	3.167	286.25	3.192	3763	30.7		
286.27	0.025	0.000	3.254	286.27	3.279	3817	30.7		
286.29	0.025	0.000	3.341	286.29	3.366	3871	30.8		
286.31	0.025	0.021	3.429	286.31	3.476	3926	30.8	Emergency Spillwa	y Invert (286.30)
286.33	0.025	0.112	3.519	286.33	3.656	3981	30.8		
286.35	0.026	0.247	3.608	286.35	3.881	4037	30.8		
286.37	0.026	0.419	3.699	286.37	4.144	4093	30.8		
286.39	0.026	0.626	3.790	286.39	4.442	4149	30.8		
286.41	0.026	0.866	3.882	286.41	4.774	4205	30.8		
286.43	0.026	1.138	3.975	286.43	5.140	4262	30.8		
200.45	0.020	1.443	4.009	286.47	5.060	4319	30.8	100 Vear Lir	controlled
286.49	0.020	2 149	4.103	286.49	6.433	4377	30.8	100 Teal OI	iconti olieu
286.51	0.026	2 753	4 354	286.51	7 133	4493	30.8		
286.53	0.027	3.221	4.450	286.53	7.698	4552	30.8		
286.55	0.027	3.725	4.547	286.55	8.299	4611	30.8		
286.57	0.027	4.264	4.645	286.57	8.936	4670	30.8		
286.59	0.027	4.840	4.743	286.59	9.610	4730	30.8		
286.61	0.027	5.416	4.843	286.61	10.285	4790	30.8		
286.63	0.027	6.060	4.942	286.63	11.030	4850	30.8		
286.65	0.027	6.742	5.043	286.65	11.812	4911	30.8		
286.67	0.027	7.461	5.144	286.67	12.633	4972	30.8		
286.69	0.027	8.219	5.246	286.69	13.492	5034	30.8		
286./1	0.028	8.892	5.348	286.71	14.268	5096	30.8		
280.73	0.028	9.710	5.45Z	286.75	16 161	5158	30.8		
200.75	0.020	10.577	0.000	200.75	10.101	5220	50.6		

Shading represents Storage-Discharge pairings used in VO modelling

Wet SWM Pond Permanent Pool and Extended Detention Sizing 7370 Centre Road Project Number: 2099 Date: September 2021 Designer Initials: C.M.D.

PERMANENT POOL			
Level of Protection =	Enhanced	(Level 1)	RESPONSE TO
Weighted Impervious =	58	%	COMMENT E11
Drainage Area =	27.26	ha	
SWMP Type =	4. Wet Pond		
Required Permanent Pool (including 40m ³ /ha for extended detention)= Required Permanent Pool (minus 40m ³ /ha for extended detention)=	198.0 158	m ³ /ha m ³ /ha	

Required Permanent Pool = 4307 m³

TABLE 3.2 - WATER QUALITY STORAGE REQUIREMENTS (FROM MOE SWM PLANNING AND DESIGN MANUAL - 2003)

Protectio	SWMP Type	Storage Volume (m ³ /ha) for Impervious Level						
n Level	Swiir Type	35%	55%	70%	85%			
Enhanco	1. Infiltration	25	30	35	40			
	2. Wetlands	80	105	120	140			
	3. Hybrid Wet Pond/Wetland	110	150	175	195			
1)	4. Wet Pond	140	190	225	250			
	1. Infiltration	20	20	25	30			
Normal	2. Wetlands	60	70	80	90			
(Level 2)	3. Hybrid Wet Pond/Wetland	75	90	105	120			
	4. Wet Pond	90	110	130	150			
	1. Infiltration	20	20	20	20			
Pasia	2. Wetlands	60	60	60	60			
(Level 3)	Hybrid Wet Pond/Wetland	60	70	75	80			
	4. Wet Pond	60	75	85	95			
	5. Dry Pond (Continuous Flow)	90	150	200	240			

EXTENDED DETENTION

Using the 25mm - 4 hour Chicago Storm

						2		
Frankan Control Valuman	$(\Lambda \Lambda)$	- Dun off Donth (mana)	V Ducincero Auco	(h -	\ \ 1 0	1	1 / 100 100	\/h\
FIOSION CONTOL VOILIME I	VI	= RUNOU Depin (mm)	x Drainage Area i	na	1 X IU	((())	/ ([]] []	าแกลา
Electer control control	• /		/ Drainago / iloa j	110	,	``` /	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

х

27.26 ha x 10 m³ / mm·ha

27.26 ha

Erosion Control Volume (V) = 21.46 mm Erosion Control Volume (V) = 5850 m³

Using 40m³/ha

Extended Detention Volume (V) = $40m^{3}/ha \times Drainage Area$ (ha)

Extended Detention Volume (V) = 40 m³/ha

Extended Detention Volume (V) = 1090.4 m³

5850 m³

Governing Volume (V) =

OUTFLOW SUMMARY WET SWM POND

7370 Centre Road Project Number: 2099 Date: September 2021 Designer Initials: C.M.D.

Starting Water Level (m) = 295.50 Elevation Increment (m) = 0.02

RESPONSE TO	
COMMENT E11	

Shading represents Storage-Discharge pairings used in VO modelling

Unstream	Orifice 1	Emergency Spillway	Woir 1	Stano	Total	Storage	Detention		
Flevation	Outflow	Outflow	Outflow	Stage	Flow	Storage	Time	4 Hour Chicago	12 Hour SCS
(m)	(cms)	(cms)	(cms)	(m)	(cms)	(m ³)	(hrs)	Storm	Storm
295 50	0.000	0.000	0.000	295 50	0.000	0	0.0	Orific	e 1
295.52	0.000	0.000	0.000	295.52	0.000	100	0.0	Offino	
295.54	0.002	0.000	0.000	295.54	0.002	201	0.0		
295.56	0.003	0.000	0.000	295.56	0.003	302	11.3		
295.58	0.006	0.000	0.000	295.58	0.006	405	17.4		
295.60	0.009	0.000	0.000	295.60	0.009	508	21.2		
295.62	0.009	0.000	0.000	295.62	0.009	613	24.4		
295.64	0.018	0.000	0.000	295.64	0.018	719	26.5		
295.66	0.024	0.000	0.000	295.66	0.024	825	27.9		
295.68	0.028	0.000	0.000	295.68	0.028	932	29.1		
295.70	0.032	0.000	0.000	295.70	0.032	1041	30.1		
295.72	0.030	0.000	0.000	295.72	0.030	1260	31.0		
295 76	0.000	0.000	0.000	295 76	0.000	1371	32.5		
295.78	0.045	0.000	0.000	295.78	0.045	1483	33.3		
295.80	0.047	0.000	0.000	295.80	0.047	1596	33.9		
295.82	0.050	0.000	0.000	295.82	0.050	1710	34.6		
295.84	0.052	0.000	0.000	295.84	0.052	1825	35.2		
295.86	0.054	0.000	0.000	295.86	0.054	1941	35.8		
295.88	0.056	0.000	0.000	295.88	0.056	2058	36.4		
295.90	0.059	0.000	0.000	295.90	0.059	2176	37.0		
295.92	0.061	0.000	0.000	295.92	0.061	2294	37.5		
295.94	0.062	0.000	0.000	295.94	0.062	2414	38.1		
295.96	0.064	0.000	0.000	295.96	0.064	2535	38.6		
295.98	0.066	0.000	0.000	295.98	0.066	2656	39.1		
296.00	0.000	0.000	0.000	290.00	0.000	2110	39.0		
290.02	0.070	0.000	0.000	290.02	0.070	2902	40.1		
290.04	0.071	0.000	0.000	290.04	0.071	3151	40.0		
296.08	0.075	0.000	0.000	296.08	0.075	3276	41.6		
296.10	0.076	0.000	0.000	296.10	0.076	3402	42.0		
296.12	0.078	0.000	0.000	296.12	0.078	3529	42.5		
296.14	0.079	0.000	0.000	296.14	0.079	3657	42.9		
296.16	0.081	0.000	0.000	296.16	0.081	3785	43.4		
296.18	0.082	0.000	0.000	296.18	0.082	3914	43.8	2 Year	
296.20	0.084	0.000	0.000	296.20	0.084	4044	44.3		
296.22	0.085	0.000	0.000	296.22	0.085	4175	44.7		
296.24	0.086	0.000	0.000	296.24	0.086	4306	45.1		
296.26	0.088	0.000	0.000	296.26	0.088	4438	45.5		
290.20	0.089	0.000	0.000	290.20	0.009	4571	46.0		
290.00	0.091	0.000	0.000	290.30	0.091	4839	46.8		2 Vear
296.34	0.093	0.000	0.000	296.34	0.093	4000	47.2	Wei	2 16ai
296.36	0.094	0.000	0.000	296.36	0.105	5109	47.6	110	
296.38	0.096	0.000	0.030	296.38	0.125	5246	47.9		
296.40	0.097	0.000	0.055	296.40	0.152	5383	48.2		
296.42	0.098	0.000	0.084	296.42	0.182	5521	48.4		
296.44	0.099	0.000	0.118	296.44	0.217	5659	48.6	5 Year	
296.46	0.101	0.000	0.155	296.46	0.255	5799	48.8	Extended [Detention
296.48	0.102	0.000	0.195	296.48	0.297	5939	48.9		
296.50	0.103	0.000	0.238	296.50	0.341	6079	49.0		
296.52	0.104	0.000	0.284	296.52	0.388	6221	49.1	10.1/1	5 1/1
290.54	0.105	0.000	0.343	290.54	0.449	6506	49.2	10 Year	5 Year
290.30	0.100	0.000	0.390	290.00	0.503	6649	49.3		
296.60	0.107	0,000	0.401	296.60	0.559	6793	49.4		
296.62	0.110	0.000	0.569	296.62	0.679	6938	49.5		
296.64	0.111	0.000	0.682	296.64	0.793	7083	49.6	25 Year	
296.66	0.112	0.000	0.752	296.66	0.863	7228	49.6		10 Year
296.68	0.113	0.000	0.823	296.68	0.936	7375	49.7		
296.70	0.114	0.000	0.897	296.70	1.011	7522	49.7		
296.72	0.115	0.000	0.973	296.72	1.088	7670	49.7		
296.74	0.116	0.000	1.093	296.74	1.209	7818	49.8		
296.76	0.117	0.000	1.176	296.76	1.293	7967	49.8		
296.78	0.118	0.000	1.261	296.78	1.379	8116	49.8		0E \/
290.00	0.119	0.000	1.340	290.00	1.407	0207 8/17	49.9		∠o rear
230.02	0.120	0.000	1.437	290.02	1.007	0417	43.9		

OUTFLOW SUMMARY WET SWM POND

Starting Water Level (m) = 295.50 Elevation Increment (m) = 0.02

Shading represents Storage-Discharge pairings used in VO modelling

Upstream	Orifice 1	Emergency Spillway	Weir 1	Stage	Total	Storage	Detention		40.11
Elevation	Outflow	Outflow	Outflow		Flow		Time	4 Hour Chicago	12 Hour SCS
(m)	(cms)	(cms)	(cms)	(m)	(cms)	(m ³)	(hrs)	Storm	Storm
296.84	0.121	0.000	1.544	296.84	1.665	8569	49.9		
296.86	0.122	0.000	1.638	296.86	1.760	8721	49.9		
296.88	0.123	0.000	1.733	296.88	1.856	8873	50.0	100 Year	
296.90	0.124	0.000	1.830	296.90	1.954	9027	50.0		
296.92	0.125	0.000	1.929	296.92	2.054	9180	50.0		
296.94	0.126	0.000	2.041	296.94	2.167	9335	50.0		
296.96	0.127	0.000	2.144	296.96	2.271	9490	50.1		
296.98	0.128	0.000	2.249	296.98	2.376	9646	50.1		
297.00	0.129	0.000	2.355	297.00	2.484	9802	50.1		
297.02	0.130	0.000	2.463	297.02	2.592	9959	50.1		
297.04	0.130	0.000	2.572	297.04	2.703	10117	50.1		100 Year
297.06	0.131	0.000	2.683	297.06	2.815	10275	50.1		
297.08	0.132	0.000	2.796	297.08	2.928	10434	50.2		
297.10	0.133	0.000	2.910	297.10	3.043	10593	50.2		
297.12	0.134	0.000	3.026	297.12	3.160	10754	50.2		
297.14	0.135	0.000	3.143	297.14	3.278	10914	50.2		
297.16	0.136	0.000	3.261	297.16	3.397	11076	50.2		
297.18	0.137	0.000	3.381	297.18	3.518	11238	50.2		
297.20	0.138	0.000	3.503	297.20	3.640	11400	50.2	Emergency	Spillway
297.22	0.138	0.078	3.626	297.22	3.842	11563	50.2		
297.24	0.139	0.224	3.750	297.24	4.113	11727	50.3		
297.26	0.140	0.420	3.876	297.26	4.436	11892	50.3		
297.28	0.141	0.661	4.003	297.28	4.805	12057	50.3		
297.30	0.142	0.942	4.131	297.30	5.215	12222	50.3		
297.32	0.143	1.264	4.261	297.32	5.667	12389	50.3		
297.34	0.144	1.623	4.392	297.34	6.159	12556	50.3		
297.36	0.144	2.022	4.524	297.36	6.690	12723	50.3		
297.38	0.145	2.458	4.658	297.38	7.261	12891	50.3		
297.40	0.146	2.932	4.793	297.40	7.871	13060	50.3		
297.42	0.147	3.444	4.929	297.42	8.520	13230	50.3		
297.44	0.148	3.994	5.067	297.44	9.209	13400	50.3		
297.46	0.148	4.583	5.206	297.46	9.937	13570	50.3		
297.48	0.149	5.210	5.346	297.48	10.705	13742	50.3		
297.50	0.150	5.718	5.487	297.50	11.355	13913	50.4		

Manufactured Treatment Device

A manufactured treatment device can contribute to the treatment train approach for water quality control. Per Township of Uxbridge criteria, a Vortech oil-grit-separator (OGS) Unit (or approved equivalent) will be provided to treat runoff before it enters the wet pond and the underground storage facility.

Table 2.3 below summarizes the recommended stormwater management Best Management

 Practices (BMPs) for the subject development.

Stormwater Management Control	Recommended BMP				
	Increased Topsoil Depth				
Lot Level Controls	Roof Leader to Grassed Areas				
	Rear Yard At-Surface Infiltration Trenches				
Converse System Controls	Catchbasin Infiltration/Filtration Systems				
Conveyance System Controls	Grassed Filter Strip				
	Wet Pond				
End Of Pipe Controls	Dry Pond				
	Manufactured Treatment Device (OGS)				

Table 2.3: Summary of the Recommended Stormwater Best Management Practices (BMPs)

2.4 **Proposed Storm Drainage**

The proposed storm drainage plan is shown on **Figure 2.2**.

Runoff from Catchment 201 will be initially conveyed to local rear yard at-surface infiltration trenches and catchbasin infiltration/filtration facilities, where feasible, or otherwise captured in the minor system (refer to **Figure 2.3** for LID location plan). A wet SWM pond (Wet SWM Pond 1) will provide quantity, quality and erosion control for runoff up to and including the 100 year storm event before outletting to the Uxbridge Brook tributary. As per Uxbridge design criteria, an OGS will provide pre-treatment upstream of the wet SWM Pond. Major system flows will be conveyed by the proposed road right-of-ways to an overland flow route in the wet SWM pond block which doubles as the wet SWM pond access road. In an emergency spill scenario, runoff will be conveyed via an emergency spillway in the wet SWM pond to the Uxbridge Brook Tributary. A plan view of Wet SWM Pond 1 and associated infrastructure has been provided on **Figure 2.4**.

Runoff from Catchment 202 will be conveyed overland to a proposed 600 mm diameter bypass storm sewer and will outlet directly to the Uxbridge Brook tributary.

Runoff from Catchment 203 will be conveyed overland directly to the proposed wet SWM pond.

Runoff from Catchment 204 will initially be conveyed to local rear yard at-surface infiltration trenches and catchbasinfiltration facilities (refer to **Figure 2.3**), followed by conveyance via storm sewers and overland flow along road right of ways to an end of pipe stormwater attenuation facility. The catchbasin filtration facilities will provide the quality control requirements for Catchment 204. A dry SWM pond (Dry SWM Pond 1) will provide quantity and erosion control for runoff up to and including the 100 year storm event before outletting to the Uxbridge Brook tributary. An OGS will provide pre-treatment upstream of the dry SWM pond. Outflow from the control manhole will be directed to a grassed filter strip before outletting to the Uxbridge Brook Tributary via a trapezoidal outlet swale. Major system flows will be conveyed by the proposed road right-of-ways to an overland flow route on Street 'M' (west overland flow route) and Street 'J' (north overland flow route). In an emergency spill scenario, runoff will be conveyed via an emergency spillway in the dry SWM pond to the Centre Road ditch which conveys flows to the Uxbridge Brook Tributary. A plan view of the Dry SWM Pond 1 has been provided on **Figure 2.5**.

Runoff from Catchment 205 will be conveyed overland directly to the proposed dry SWM pond.

Runoff from Catchment 206 and 208 will be conveyed to local at-surface rear yard at-surface infiltration trenches, where able, or otherwise drain uncontrolled to the Centre Road ditch and Uxbridge Brook tributary, respectively.

Runoff from Catchment 207 will be conveyed to local at-surface rear yard at-surface infiltration trenches, where able, or otherwise drain uncontrolled to the Centre Road CSP culvert.

2.5 Proposed Stormwater Management Plan

2.5.1 Quantity Control and Erosion Control

The allowable release rates to the existing wetland and the north Centre Road CSP culvert for each design storm are presented in **Table 2.2** above.

Wet SWM Pond 1 will control proposed peak flows to the Uxbridge Brook tributary from the proposed development west of the NHS. Dry SWM Pond 1 will control proposed peak flows to the Uxbridge Brook tributary from the proposed development east of the NHS. Each quantity control facility is discussed in greater detail below. The active storage facilities above will control peak flows from the proposed development to existing peak flows for the 2 through 100 year storm events.

Proposed hydrology modelling was completed using the VO6 model to determine the required wet SWM pond and dry SWM Pond active storage volumes. A summary of modelling parameters and a proposed VO6 schematic are provided in **Appendix C**. A USB containing the VO6 hydrology model is also provided in **Appendix C**.

2.5.2 Quality Control

Quality control will be provided for the proposed development to meet MECP Enhanced Level Protection (80% TSS Removal) requirements. The solutions for each development area are discussed below.

West of the NHS

Quality control for Catchment 201 and 203 will be provided by the proposed wet SWM pond located adjacent to the existing wetland. The wet SWM pond has been sized for a minimum of 80% TSS removal (MECP Enhanced Level), this corresponds to a required permanent pool volume of 4,307 m³. The preliminary grading of the wet SWM pond will provide a permanent pool volume of 5,310 m³, calculations are provided in **Appendix D**. Additional removal of sediment from the runoff will be provided by upstream BMPs such as catchbasin infiltration/filtration trenches, rear yard at-surface infiltration trenches, and an OGS (Vortech Unit) located upstream of the wet SWM pond. The design of these additional facilities is discussed further in the following sections.

Quality control for Catchment 202 is not required. It is noted that the drainage associated with Catchment 202 is from roofs and rear yards which is generally considered clean. The runoff will have an opportunity to infiltrate in rear yard at-surface infiltration trenches and as it crosses grassed surfaces before sheet flowing to the NHS.

East of the NHS

Quality control for Catchment 204 will be provided by proposed catchbasin filtration trenches sized for a minimum of 80% TSS removal (MECP Enhanced Level), this corresponds to a required filtration volume of 182.7 m³. The preliminary catchbasin filtration trench layout and design for Catchment 204 will provide a filtration volume of 188.0 m³, calculations are provided in **Appendix E**. The design of the catchbasin filtration trenches is discussed further in the followings sections. Additional removal of sediment from the runoff will be provided by upstream BMPs such as rear yard at-surface infiltration trenches, an OGS (Vortech Unit) upstream of the dry SWM Pond, and a grassed filter strip downstream of the dry SWM Pond.

Quality control for Catchments 205, 206, and 207 is not required. It is noted that the drainage associated with these catchments is from roofs and rear yards and the SWM block which is generally considered clean. The runoff will have an opportunity to infiltrate in rear yard atsurface infiltration trenches and as it crosses grassed surfaces before sheet flowing to the NHS or to grass roadside ditches.

Other Pollutants

In accordance with the LSRCA Technical Guidelines for Stormwater Management Submissions, road grades have been minimized to the extent feasible to reduce the necessity of winter salting. To assist in temperature mitigation, shading will be included via plantings around the wet SWM Pond.

As the land use of the proposed development is residential, the proposed development is considered to be a low risk for contamination by other pollutants such as bacteria and pesticides. The proposed quality control measures have been designed in series to constitute a treatment train that is capable of treating the anticipated contaminants such as oil, grease, gas, and heavy metals. Regular inspection of the manufactured treatment devices, catchbasin infiltration/filtration trenches, and SWM pond facilities will assist in maintaining their effectiveness.

2.5.3 Volume Control

The proposed development will include more than 0.5 ha of new impervious surface, therefore, per LSRCA criteria, the post-development runoff volume from a 25 mm rainfall event from impervious surfaces must be retained on-site unless the site is considered a "site with restrictions". Volume control was calculated for each development area as outlined below.

Volume control for the proposed development will be provided through rear yard at-surface infiltration trenches, and catchbasin infiltration/filtration trenches. Rear yard at-surface infiltration trenches will be provided on all split draining lots where feasible. Catchbasin infiltration trenches will be provided wherever there is adequate clearance to the seasonally high groundwater. Catchbasin filtration trenches will be provided where there is an ot feasible. Catchbasin infiltration/filtration trenches cannot be provided where they would have to cross an intersection or where it would interfere with lot servicing connections. The design of the infiltration and filtration facilities is discussed further in the following sections.

The combined volume provided based on the preliminary BMPs above is 1,229.4 m³ which corresponds to an equivalent depth of rainfall over the total impervious area of 6.4 mm. This achieves Alternative #2 criteria for volume control. Additional volume control cannot be provided due to the high seasonal groundwater conditions, generally low infiltration rate across the site (to be confirmed through detailed design). The number and size of rear yard infiltration trenches has been maximized. The size of the catchbasin infiltration/filtration trenches have been maximized to still achieve relevant sizing criteria and not interfere with required service connections and utilities in the right-of-way. Calculations are provided in **Appendix E**.

2.5.4 Water Budget

Where feasible, measures to minimize impacts on the water budget will be incorporated into the development design. As noted in the Hydrogeological Study, the estimated existing infiltration volume on the proposed development is approximately 60,883 m³. Without mitigation the proposed development infiltration volume is approximately 31,668 m³. It is anticipated that a proposed infiltration volume of approximately 160,246 m³ can be achieved through the proposed mitigation measures outlined above.

2.5.5 Phosphorus Budget

Under the Lake Simcoe Protection Plan, a stormwater management plan must demonstrate how phosphorus loadings are minimized between existing and proposed. The MECP database application *Lake Simcoe Phosphorus Loading Development Tool* (v2, 01-April-2012 update) was used to complete the phosphorus budget for the proposed development. Due to the complex treatment train provided by the SWM measures outlined above, a spreadsheet based on the MECP database application was developed to determine the existing and proposed phosphorus budget.