

7370 Centre Road, Uxbridge

Functional Servicing and Stormwater Management Report

March 2021

Submitted by:

SCS Consulting Group Ltd 30 Centurian Drive, Suite 100 Markham, ON, L3R 8B8 Phone 905 475 1900 Fax 905 475 8335

Project Number: 2099

TABLE OF CONTENTS

		F	Page
1.0		INTRODUCTION	1
	1.1	Purpose of the Functional Servicing Report	
	1.2	Study Area	
	1.3	Background Servicing Information	
	1.4		
2.0		STORMWATER MANAGEMENT	4
	2.1	Stormwater Runoff Control Criteria	
	2.2		
		2.2.1 Existing Site Characterization	
		2.2.2 Existing Hydrologic Modelling	
	2.3	Best Management Practices	
		2.3.1 Proposed Lot Level Controls	
		2.3.2 Proposed Conveyance Controls	
		2.3.3 Proposed End-of-Pipe Controls	
	2.4	Proposed Storm Drainage	
	2.5		
		2.5.1 Quantity Control and Erosion Control	
		2.5.2 Quality Control	
		2.5.3 Volume Control	
		2.5.4 Water Budget	14
		2.5.5 Phosphorus Budget	
	2.6	Wet Stormwater Management Pond 1 Design Criteria	
	2.7	Dry Stormwater Management Pond 1 Design Criteria	
	2.8	Rear Yard At-Surface Infiltration Trenches	
	2.9	Catchbasin Infiltration and Filtration Trenches	
	2.10		
	2.1	e e e e e e e e e e e e e e e e e e e	
	2.12	Stormwater Management and Servicing Phasing	18
3.0		SANITARY SERVICING	
	3.1	Existing Sanitary Sewer System	19
	3.2	Proposed Sanitary Sewer System	
	3.3	External Sanitary Servicing	
	3.4	Servicing Allocation	
4.0		WATER SUPPLY AND DISTRIBUTION	24
	4.1	Existing Water Distribution	
	4.2	Proposed Water System	
5.0		GRADING	
	5.1	Existing Grading Conditions	
	5.2	Proposed Grading Concept	
6.0		RIGHT-OF-WAYS AND SIDEWALKS	
7.0		EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION	29
8.0		SUMMARY	30

LIST OF TABLES

Table 2.1	Stormwater Runoff Control Criteria
Table 2.2	Summary of Existing Peak Flows
Table 2.3	Summary of the Recommended Stormwater Best Management Practices
	(BMPs)
Table 2.4	Wet SWM Pond 1 Operating Characteristics
Table 2.5	Dry SWM Pond 1 Operating Characteristics
Table 2.6	Comparison of Existing Targets and Proposed Flows – Peak Flows – 4-hour
	Chicago
Table 2.7	Comparison of Existing Targets and Proposed Peak Flows – 12-hour SCS
	Type II
Table 2.8	Phosphorus Budget Summary
Table 2.9	Rear Yard At-Surface Infiltration Trench Dimensions
Table 2.10	Rainfall Intensity Parameters
	<u>LIST OF FIGURES</u>
F' 1.1	C'. I .' DI

Figure 1.1	Site Location Plan
Figure 2.1	Existing Storm Drainage Plan
Figure 2.2	Proposed Storm Drainage Plan
Figure 2.3	LID Location Plan
Figure 2.4	Wet Stormwater Management Pond 1
Figure 2.5	Dry Stormwater Management Pond 1
Figure 2.6	Existing Phosphorus Budget
Figure 2.7	Proposed Phosphorus Budget
Figure 2.8	Rear Yard Infiltration Trench Details
Figure 2.9	Catchbasin Infiltration/Filtration Trench Details
Figure 3.1	Proposed Sanitary Drainage Plan
Figure 4.1	Water Distribution System
Figure 5.1	Preliminary Grading Plan

LIST OF APPENDICES

Appendix A	Draft Plan of Subdivision
Appendix B	Relevant Excerpts
Appendix C	Hydrology Modelling
Appendix D	Hydraulics and SWM Facility Sizing Calculations
Appendix E	BMP Sizing and Phosphorus Budget Calculations
Appendix F	Preliminary Vortech Sizing Calculations
Appendix G	Sanitary Flow Calculations
Appendix H	Water Distribution Analysis
Appendix I	Right-of-Way Concepts

SUBMISSION HISTORY

Submission	Date	In Support Of	Distributed To
1 st	March 2021	Draft Plan Approval	Township of Uxbridge, LSRCA, Region of Durham

Project No. 2099 Page iii

1.0 INTRODUCTION

SCS Consulting Group Ltd. has been retained by Bridgebrook Corp. to prepare a Functional Servicing and Stormwater Report (FSSR) for a proposed residential development located at 7370 Centre Road North, north of Bolton Drive within the Township of Uxbridge.

1.1 Purpose of the Functional Servicing Report

The FSSR has been prepared in support of the Draft Plan of Subdivision application for the proposed development. The Draft Plan of Subdivision is provided in **Appendix A**. The proposed development consists of the following land uses:

- low density residential (521 units),
- → medium density residential (69 units),
- → parks,
- natural heritage system (NHS),
- Stormwater Management (SWM) blocks, and
- Proposed roads and laneways.

The purpose of this report is to demonstrate that the development can be graded and serviced in accordance with the Township of Uxbridge, Lake Simcoe Region Conservation Authority (LSRCA), Region of Durham, and the Ministry of Environment, Conservation and Parks (MECP) design criteria.

1.2 Study Area

The study area is approximately 39.9 ha in size and is bound by 6th Concession Road to the west, Centre Road North to the east, existing residential development to the south (Quaker Village) and existing agricultural lands to the north (see **Figure 1.1**).

The existing lands are comprised of agricultural land and NHS areas. The proposed development is located within the Uxbridge Brook Subwatershed in the Township of Uxbridge.

1.3 Background Servicing Information

In preparation of the servicing and SWM strategies, the following design guidelines and standards were used:

- Design Criteria and Standard Detail Drawings for Subdivision Developments and Site Plans, Town of Uxbridge (2016);
- Design Specifications for Engineering Submissions, Regional Municipality of Durham (April 2020);
- → LSRCA Technical Guidelines for Stormwater Management Submissions, LSRCA (June 2016);
- Low Impact Development Stormwater Management Planning and Design Guide, Credit Valley Conservation & Toronto and Region Conservation (2010);
- Phosphorus Offsetting Policy, Lake Simcoe Region Conservation Authority (May 2019);
- → Design Guidelines for Sewage Works, MOE (2008);

- Ministry of Environment, Conservation and Parks (MECP) Stormwater Management Planning and Design Manual (March 2003); and
- Ministry of Transportation (MTO) Drainage Management Manual (1997).

The site servicing and SWM strategies in this report are based on the following reports for this Draft Plan of Subdivision:

- Geotechnical Investigation, Proposed Residential Development, 7370 Centre Road, prepared by Soil Engineers Ltd., dated February 16, 2018;
- → Hydrogeological Investigation, Water Balance and Catchment Based Water Balance, 7370 Centre Road, prepared by Beacon Environmental, dated March 2021; and
- Environmental Impact Study, 7370 Centre Road, prepared by Beacon Environmental, dated March 2021; and
- Geomorphic Assessment, 7370 Centre Road, prepared by Beacon, dated March 2020.

The servicing and SWM strategies are also based on the following approved Engineering Drawings:

- → Drawing P01 Oakside Drive Sta. -0+10 to 2+50, Mason Homes, October 2004, prepared by Roberts Bell Engineering Ltd.;
- → Drawing SAN –Sanitary Drainage Area Plan, Mason Homes, September 2004, prepared by Roberts Bell Engineering Ltd.;
- → Drawing G-102 General Plan Quaker Village Phase 2, September 1987, prepared by G.M. Sernas & Associates Ltd.;
- → Drawing P-101 Bolton Drive Sta. 0+000 to 0+200.0, Quaker Village Phase 2, September 1987, prepared by G.M. Sernas & Associates Ltd.;
- → Drawing P-102 Bolton Drive Sta. 0+200.0 to 0+396.080, Quaker Village Phase 2, September 1987, prepared by G.M. Sernas & Associates Ltd.;
- → Drawing G-202 General Plan Quaker Village Phase 5, September 1997, prepared by G.M. Sernas & Associates Ltd.;
- → Drawing G-102B Storm Drainage Area Plan, Quaker Village Phase 5, September 1997, prepared by G.M. Sernas & Associates Ltd.; and
- Township of Uxbridge Water Supply System Map, March 22, 2019.

Excerpts from the above listed documents are included in **Appendix B**.

A Rainscaping charrette with the Township of Uxbridge and the LSRCA was held on August 25, 2020, which confirmed the following low impact development (LID) measures would be acceptable to be considered for use in this proposed development:

Public LIDs:

- Surface infiltration facilities (bioswales/rain gardens) within the boulevards of municipal roads with no driveways, and within parks;
- Rear-yard at-surface infiltration trenches;
- Catchbasin infiltration/filtration trenches;
- Surface infiltration facilities may be used within the buffer area along the back of lots;

- Underground active storage facility; and

- Downstream Infiltration/filtration facilities.

Preliminary design input and operations and maintenance concerns were provided as part of the Rainscaping charrette process and were incorporated into the LID design outlined in the relevant report sections below. Excerpts from the Rainscaping meeting minutes are included in **Appendix B**.

1.4 Site Phasing

The proposed development may proceed as two separate phases with the first phase comprised of the lots east of the NHS and the second phase west of the NHS. The servicing of the subdivision phases will be discussed in greater detail below.

2.0 STORMWATER MANAGEMENT

2.1 **Stormwater Runoff Control Criteria**

The following stormwater runoff control criteria have been established based on the greatest requirements of each of the design guidelines and standards listed in Section 1.3. The stormwater runoff criteria are summarized below in Table 2.1:

Table 2.1 – Stormwater Runoff Control Criteria

Criteria	Control Measure
Quantity Control	Control proposed peak flows to existing peak flows for the 2 through 100 year storm events (MECP).
Quality Control	Provide MECP Enhanced (Level 1) Protection for 80% TSS Removal (MECP).
Erosion Control	Detention of the 40 mm storm event for a minimum of 24 hours (Uxbridge).
Volume Control	On-site retention of the 25 mm rainfall runoff (treatment alternatives to be used as necessary as outlined in LSRCA Guidelines).
Water Budget	Where feasible, measures to minimize development impacts on the water balance to be incorporated into the development design (i.e. infiltration measures) (LSRCA).
Phosphorus Budget	The target is "zero" export from development. Minimum 90% Phosphorus to be removed through mitigation (Mitigated vs Unmitigated) (Uxbridge). Any remaining phosphorus exported from the site will be compensated as outlined in the LSRCA Phosphorus Offsetting Policy (LSRCA).

For the purposes of this FSSR, the portion of the proposed development west of the NHS and the portion of the development east of the NHS will meet quality control and erosion control individually for their respective development areas. The quantity control, volume control, water budget, and phosphorus budget will be calculated based on the entire proposed development.

2.2 **Existing Drainage**

As shown on Figure 2.1, the majority of runoff from Catchment 101 is conveyed southeast to a tributary of the Uxbridge Brook running through it. Flows in the tributary are controlled by an upstream existing SWM Pond located in the subdivision immediately south of the proposed development (Quaker Village SWM Pond) which outlets north through a storm sewer under Bolton Drive. Drainage from the tributary is then conveyed east through a concrete box culvert underneath Centre Road North.

Runoff from a portion of Catchment 101 is directed south towards an existing crushed CSP culvert which conveys flows underneath the existing access road to the south portion of the

NHS and the Uxbridge Brook tributary. An existing RLCB in the Quaker Village Subdivision has been sized to capture minor system (5 year) flows from 7.9 ha of the existing site (runoff coefficient 0.25) and convey them to the Quaker Village Subdivision SWM Pond (refer to Drawing G-102B in **Appendix B**).

Runoff from Catchment 102 is conveyed northeast to an existing CSP culvert under Centre Road which outlets to a swale draining east through the adjacent property and ultimately to a tributary of the Uxbridge Brook. The extents of the existing storm drainage boundaries were established based on the limit of development to determine relevant target release rates.

2.2.1 Existing Site Characterization

The soil classifications were identified in geotechnical and hydrogeological investigations undertaken by Soil Engineers Ltd. and Beacon Environmental Ltd. respectively. The geotechnical investigation identified that the soils within the study limits generally consist of silty clay/silty clay tills with deposits of sand and silt at various locations. Hydraulic conductivity testing was conducted at several of the sand locations across the site, the lowest measured hydraulic conductivity was 9.5 x 10⁻⁵ cm/s which corresponds to an infiltration rate of approximately 49 mm/hr (per LID SWM Planning and Design Guide Table C1). For design purposes, a conservative infiltration rate of 12 mm/hr, based on the presence of silty clay soils, has been used. The design infiltration rate will be confirmed with in-situ testing at the detailed design stage. Relevant excerpts from the geotechnical and hydrogeological investigations are provided in **Appendix B**.

Groundwater measurements have been conducted from December 2017 to August 2020 at all accessible monitoring locations. Groundwater depths ranged from approximately 0.2 meters below ground surface (mbgs) to 8.92 mbgs. Groundwater elevations were found to range from approximately 332.0 masl to 285.2 masl. The groundwater appears to reside unconfined within layers of silty clay and silty sand. Relevant excerpts from the hydrogeological investigation are provided in **Appendix B**.

2.2.2 Existing Hydrologic Modelling

Hydrologic modelling was undertaken using the Visual Otthymo Version 6.0 software (VO6) based on the 4-hour Chicago and 12-hour SCS Type II design storm distributions (per Uxbridge design standards). The proposed development is located within the Township of Uxbridge, therefore, the IDF rainfall information was obtained from the Township of Uxbridge design standards to determine the existing peak flows to outlet locations. The Uxbridge design standards do not include IDF information for the 50 year storm event so it has been excluded from the hydrologic analysis.

The existing flows from the study area to the outlet locations are summarized in **Table 2.2**.

To Uxbridge Brook To Centre Road CSP Return Tributary – VO Node 101 **Culvert – VO Node 102** Period 4-Hour 12-Hour 4-Hour 12-Hour Storm Chicago **SCS** Chicago SCS 2 Year 0.702 1.138 0.051 0.085 5 Year 1.431 2.091 0.109 0.148 10 Year 2.752 1.964 0.151 0.190 3.508 25 Year 2.636 0.212 0.238 100 Year 0.329 4.087 4.871 0.323

Table 2.2: Summary of Existing Peak Flows

A summary of modelling parameters and an existing VO6 schematic are provided in **Appendix** C. A CD containing the VO6 hydrology model is also provided in **Appendix** C.

2.3 Best Management Practices

In accordance with the MECP Stormwater Management Planning and Design Manual (2003), a review of stormwater management best practices was completed using a treatment train approach, which evaluated lot level, conveyance system and end-of-pipe alternatives. The potential best management practices were evaluated based on the stormwater management criteria listed in **Table 2.1**.

The following are examples of lot level, conveyance and end-of-pipe controls that were evaluated for use in the proposed development.

Lot Level Controls

Lot-level controls are at-source measures that reduce runoff prior to stormwater entering the conveyance system, such as:

- Increased topsoil depth;
- Roof leaders to grassed areas;
- → At-source storage (i.e. rooftop or parking lot storage);
- Permeable pavements; and
- ► Infiltration trenches/soak-away pits.

Conveyance Controls

Conveyance controls provide treatment of stormwater during the transport of runoff from individual lots to the receiving watercourse or end-of-pipe facility. Examples of conveyance controls include:

- → Grassed Swales;
- **→** Bioretention systems;
- Catchbasin infiltration/filtration systems;

- Permeable pavement;
- Grassed filter strips, and
- Pervious pipe systems.

End-of-Pipe Controls

End-of-pipe stormwater management facilities receive stormwater flows from a conveyance system (i.e., storm sewers or ditches) and provide treatment of stormwater prior to discharging flows to the receiving watercourse. Typical end-of-pipe controls include:

- → Wet ponds;
- → Wetlands;
- → Dry ponds;
- Infiltration/filtration basins;
- Manhole insert treatment systems (i.e. oil-grit-separators and filters); and
- Underground storage.

2.3.1 **Proposed Lot Level Controls**

Lot level controls present an opportunity to reduce runoff at the source. These controls are proposed on private properties. Incorporating controls that require minimal maintenance can be an effective method in the treatment train approach to SWM. The following lot level controls have been proposed for use in the proposed development:

Increased Topsoil Depth

An increase in the proposed topsoil depth on lots is recommended to promote lot level infiltration (up to 0.3 m depth). Increased topsoil depth will passively contribute to lot level quality and quantity control and to groundwater recharge. This contribution is not quantified to address the stormwater runoff control criteria in **Table 2.1**. A topsoil depth of 0.3 m is proposed for all landscaped areas.

Roof Leaders to Grassed Areas

Roof leaders will be discharged to grassed areas where feasible to promote lot level infiltration, thereby passively contributing to water quality and quantity control. This contribution is not quantified to address the stormwater runoff control criteria in Table 2.1.

Rear Yard At-Surface Infiltration Trenches

Infiltration trenches will be provided in the single detached rear yards as able, thereby passively contributing to water quality and quantity control. This contribution is not quantified as part of the quality and quantity control requirement in **Table 2.1**. At-surface trenches will however be utilized to meet water balance, phosphorus budget, and volume control requirements.

2.3.2 **Proposed Conveyance Controls**

Conveyance controls provide treatment of stormwater during the transport of runoff from individual lots to the receiving watercourse or end-of-pipe facility. The following conveyance controls have been proposed for use in the proposed development: Catchbasin Infiltration/Filtration Systems

Catchbasin infiltration/filtration systems will provide quality control throughout the subdivision by capturing drainage from the right-of-way. Pre-treatment will be provided in the deep sump catchbasins and other means (e.g. goss trap, CB Shield, Litta Trap, etc.) to increase the operating lifespan of the trenches. An overflow connection will be provided from the catchbasins to the storm sewer to convey runoff in excess of the trench capacities. Infiltration trenches will be provided where there is adequate separation to the seasonally high groundwater. The stone filled trenches will be lined with an impermeable liner and provided with a subdrain where there is not adequate separation to the seasonally high groundwater (i.e. filtration trenches).

Grassed Filter Strip

Grassed filter strips provide passive treatment of runoff in a sheet flow condition contributing to water quality and quantity control. This contribution is not quantified as part of the quality and quantity control requirement in Table 2.1. A grassed filter strip will be utilized at the outlet of the dry SWM Pond to meet phosphorus budget requirements.

2.3.3 **Proposed End-of-Pipe Controls**

While lot level and conveyance system controls are valuable components of the overall SWM plan, on their own they are not sufficient to meet the quantity and quality control objectives for the subject development. End-of-pipe stormwater management facilities receive stormwater flows from a conveyance system (i.e., storm sewers or ditches) and provide treatment of stormwater prior to discharging flows to the receiving watercourse. Accordingly, the following end-of-pipe controls have been proposed for use in the proposed development:

Wet Pond

To meet quantity, quality and erosion control targets, flow restrictors are used to control stormwater release rates. To accommodate the reduced release rate, stormwater detention facilities are required to store stormwater runoff. Stormwater storage for the proposed development west of the NHS will be provided by a wet pond system.

Dry Pond

To meet quantity and erosion control targets, flow restrictors are used to control stormwater release rates. To accommodate the reduced release rate, stormwater detention facilities are required to store stormwater runoff. Stormwater storage for the proposed development east of the NHS will be provided by a dry pond system.

Manufactured Treatment Device

A manufactured treatment device can contribute to the treatment train approach for water quality control. Per Township of Uxbridge criteria, a Vortech oil-grit-separator (OGS) Unit (or approved equivalent) will be provided to treat runoff before it enters the wet pond and the underground storage facility.

Table 2.3 below summarizes the recommended stormwater management Best Management Practices (BMPs) for the subject development.

Table 2.3: Summary of the Recommended Stormwater Best Management Practices (BMPs)

Stormwater Management Control	Recommended BMP	
	Increased Topsoil Depth	
Lot Level Controls	Roof Leader to Grassed Areas	
	Rear Yard At-Surface Infiltration Trenches	
Conveyence System Controls	Catchbasin Infiltration/Filtration Systems	
Conveyance System Controls	Grassed Filter Strip	
	Wet Pond	
End Of Pipe Controls	Dry Pond	
	Manufactured Treatment Device (OGS)	

2.4 Proposed Storm Drainage

The proposed storm drainage plan is shown on **Figure 2.2**.

Runoff from Catchment 201 will be initially conveyed to local rear yard at-surface infiltration trenches and catchbasin infiltration/filtration facilities, where feasible, or otherwise captured in the minor system (refer to **Figure 2.3** for LID location plan). A wet SWM pond (Wet SWM Pond 1) will provide quantity, quality and erosion control for runoff up to and including the 100 year storm event before outletting to the Uxbridge Brook tributary. As per Uxbridge design criteria, an OGS will provide pre-treatment upstream of the wet SWM Pond. Major system flows will be conveyed by the proposed road right-of-ways to an overland flow route in the wet SWM pond block which doubles as the wet SWM pond access road. In an emergency spill scenario, runoff will be conveyed via an emergency spillway in the wet SWM pond to the Uxbridge Brook Tributary. A plan view of Wet SWM Pond 1 and associated infrastructure has been provided on **Figure 2.4**.

Runoff from Catchment 202 will be conveyed overland to a proposed 600 mm diameter bypass storm sewer and will outlet directly to the Uxbridge Brook tributary.

Runoff from Catchment 203 will be conveyed overland directly to the proposed dry SWM pond.

Runoff from Catchment 204 will initially be conveyed to local rear yard at-surface infiltration trenches and catchbasinfiltration facilities (refer to **Figure 2.3**), followed by conveyance via storm sewers and overland flow along road right of ways to an end of pipe stormwater attenuation facility. The catchbasin filtration facilities will provide the quality control requirements for Catchment 204. A dry SWM pond (Dry SWM Pond 1) will provide quantity and erosion control for runoff up to and including the 100 year storm event before outletting to the Uxbridge Brook tributary. An OGS will provide pre-treatment upstream of the dry SWM pond. Outflow from the control manhole will be directed to a grassed filter strip before outletting to the Uxbridge Brook Tributary via a trapezoidal outlet swale. Major system flows will be conveyed by the proposed road right-of-ways to an overland flow route on Street 'M' (west overland flow route) and Street 'J' (north overland flow route). In an emergency spill scenario, runoff will be conveyed via an emergency spillway in the dry SWM pond to the Centre Road ditch which conveys flows to the Uxbridge Brook Tributary. A plan view of the Dry SWM Pond 1 has been provided on **Figure 2.5**.

Runoff from Catchment 205 will be conveyed overland directly to the proposed dry SWM pond.

Runoff from Catchment 206 and 208 will be conveyed to local at-surface rear yard at-surface infiltration trenches, where able, or otherwise drain uncontrolled to the Centre Road ditch and Uxbridge Brook tributary, respectively.

Runoff from Catchment 207 will be conveyed to local at-surface rear yard at-surface infiltration trenches, where able, or otherwise drain uncontrolled to the Centre Road CSP culvert.

2.5 Proposed Stormwater Management Plan

2.5.1 **Quantity Control and Erosion Control**

The allowable release rates to the existing wetland and the north Centre Road CSP culvert for each design storm are presented in **Table 2.2** above.

Wet SWM Pond 1 will control proposed peak flows to the Uxbridge Brook tributary from the proposed development west of the NHS. Dry SWM Pond 1 will control proposed peak flows to the Uxbridge Brook tributary from the proposed development east of the NHS. Each quantity control facility is discussed in greater detail below. The active storage facilities above will control peak flows from the proposed development to existing peak flows for the 2 through 100 year storm events.

Proposed hydrology modelling was completed using the VO6 model to determine the required wet SWM pond and dry SWM Pond active storage volumes. A summary of modelling parameters and a proposed VO6 schematic are provided in **Appendix C**. A USB containing the VO6 hydrology model is also provided in **Appendix C**.

Wet SWM Pond 1

The attenuation of the extended detention volume in the wet SWM pond will provide erosion protection for the downstream watercourse as well as promote sediment removal for water quality. The extended detention volume for the proposed wet SWM pond has been sized based on the detention of the 40 mm - 4 hour Chicago rainfall event for a minimum of 24 hours. The required extended detention volume for the wet SWM pond is 4,980 m³. This volume is greater than the 2003 MECP guidelines minimum extended detention volume of 40 m³/ha or 1,090 m³ based on the 27.26 ha drainage area. The peak release rate for the extended detention volume is approximately 0.094 m³/s. Calculations are provided in **Appendix D**.

A 225 mm diameter extended detention orifice plate and a 2.4 m long broad crested weir are required to meet the design peak flow rates in Table 2.2. The weir will be provided as a cutout from the proposed control manhole. A bottom draw outlet will be provided to convey low flows from the wet SWM pond to the control manhole. Multiple outlet design configuration and calculations are provided in **Appendix D**. The storage discharge characteristics of the wet SWM pond are provided below in **Table 2.4**.

Return	4-Hour Ch	nicago (VO N	ode 5)	12-Hour SCS	Type II (VO	Node 5)
Period Storm	Stage (m)	Discharge (m³/s)	Storage (m ³)	Stage (m)	Discharge (m³/s)	Storage (m ³)
40 mm	296.34	0.094	4,980	-	-	-
2 Year	296.18	0.082	3,895	296.32	0.092	4,808
5 Year	296.44	0.233	5,684	296.54	0.484	6,387
10 Year	296.54	0.472	6,362	296.67	0.897	7,279
25 Year	296.65	0.832	7,138	296.80	1.466	8,248
100 Year	296.87	1.826	8,824	297.03	2.659	10,047

Table 2.4: Wet SWM Pond 1 Operating Characteristics

Dry SWM Pond 1

The attenuation of the extended detention volume in the dry SWM pond will provide erosion protection for the downstream Uxbridge Brook tributary. The extended detention volume for the proposed dry SWM pond has been sized based on the detention of the 40 mm - 4 hour Chicago rainfall event for a minimum of 24 hours. The required extended detention volume for the dry SWM pond is 1,160 m³. This volume is greater than the 2003 MECP guidelines minimum extended detention volume of 40 m³/ha or 249.6 m³ based on the 6.24 ha drainage area. The peak release rate for the extended detention volume is approximately 0.021 m³/s. Calculations are provided in **Appendix D**.

A 90 mm diameter extended detention orifice plate and a 0.4 m long broad crested weir are required to meet the design peak flow rates in Table 2.2. The weir will be provided as a cutout from a concrete wall internal to the control manhole. Multiple outlet design configuration and calculations are provided in **Appendix D**. The storage discharge characteristics of the dry SWM Pond are provided in **Table 2.5**.

Table 2.5: Dry SWM Pond 1 Operating Characteristics

Return	4-Hour Chi	icago (VO No	de 15)	12-Hour SCS Type II (VO Node 15)		
Period Storm	Stage (m)	Discharge (m³/s)	Storage (m ³)	Stage (m)	Discharge (m³/s)	Storage (m ³)
40 mm	285.11	0.021	1,160	-	-	-
2 Year	284.98	0.015	920	285.07	0.019	1,090
5 Year	285.20	0.056	1,331	285.25	0.119	1,435
10 Year	285.25	0.124	1,442	285.34	0.229	1,613
25 Year	285.33	0.222	1,602	285.43	0.420	1,808
100 Year	285.49	0.550	1,921	285.60	0.831	2,159

Peak Flow Comparison

The proposed development was designed to control proposed peak flows to the existing peak flows. **Table 2.6** and **Table 2.7** provide a comparison of existing and proposed peak flows to the existing wetland and to the Centre Road CSP culvert.

Table 2.6: Comparison of Existing and Proposed Peak Flows – 4-hour Chicago

Return Period	Tributary	To Uxbridge Brook Tributary (m³/s) – VO Node 17		To Centre Road CSP Culvert (m³/s) – VO Node 207	
Storm	Ex.	Prop.	Ex.	Prop.	
2 Year	0.702	0.219	0.051	0.012	
5 Year	1.431	0.394	0.109	0.024	
10 Year	1.964	0.871	0.151	0.034	
25 Year	2.636	1.519	0.212	0.048	
100 Year	4.087	3.146	0.329	0.075	

Table 2.7: Comparison of Existing and Proposed Peak Flows – 12-hour SCS Type II

Return Period Storm	Tributar	dge Brook ry (m³/s) – de 17	To Centre Road CSP Culvert (m³/s) – Node 207	
Storm	Ex.	Prop.	Ex.	Prop.
2 Year	1.138	0.317	0.085	0.017
5 Year	2.091	0.919	0.148	0.031
10 Year	2.752	1.606	0.190	0.043
25 Year	3.508	2.548	0.238	0.055
100 Year	4.871	4.376	0.323	0.076

As shown above, the proposed peak flows are less than or equal to the existing peak flows for the 2 through 100 year storm events. A summary of modelling parameters and an existing VO6 schematic are provided in **Appendix C**. A USB containing the VO6 hydrology model is also provided in **Appendix C**.

2.5.2 Quality Control

Quality control will be provided for the proposed development to meet MECP Enhanced Level Protection (80% TSS Removal) requirements. The solutions for each development area are discussed below.

West of the NHS

Quality control for Catchment 201 and 203 will be provided by the proposed wet SWM pond located adjacent to the existing wetland. The wet SWM pond has been sized for a minimum of 80% TSS removal (MECP Enhanced Level), this corresponds to a required permanent pool volume of 4,307 m³. The preliminary grading of the wet SWM pond will provide a permanent pool volume of 5,310 m³,calculations are provided in **Appendix D**. Additional removal of sediment from the runoff will be provided by upstream BMPs such as catchbasin infiltration/filtration trenches, rear yard at-surface infiltration trenches, and an OGS (Vortech Unit) located upstream of the wet SWM pond. The design of these additional facilities is discussed further in the following sections.

Quality control for Catchment 202 is not required. It is noted that the drainage associated with Catchment 202 is from roofs and rear yards which is generally considered clean. The runoff will have an opportunity to infiltrate in rear yard at-surface infiltration trenches and as it crosses grassed surfaces before sheet flowing to the NHS.

East of the NHS

Quality control for Catchment 204 will be provided by proposed catchbasin filtration trenches sized for a minimum of 80% TSS removal (MECP Enhanced Level), this corresponds to a required filtration volume of 182.7 m³. The preliminary catchbasin filtration trench layout and design for Catchment 204 will provide a filtration volume of 188.0 m³, calculations are provided in **Appendix E**. The design of the catchbasin filtration trenches is discussed further in the followings sections. Additional removal of sediment from the runoff will be provided by upstream BMPs such as rear yard at-surface infiltration trenches, an OGS (Vortech Unit) upstream of the dry SWM Pond, and a grassed filter strip downstream of the dry SWM Pond.

Quality control for Catchments 205, 206, and 207 is not required. It is noted that the drainage associated with these catchments is from roofs and rear yards and the SWM block which is generally considered clean. The runoff will have an opportunity to infiltrate in rear yard atsurface infiltration trenches and as it crosses grassed surfaces before sheet flowing to the NHS or to grass roadside ditches.

2.5.3 Volume Control

The proposed development will include more than 0.5 ha of new impervious surface, therefore, per LSRCA criteria, the post-development runoff volume from a 25 mm rainfall event from impervious surfaces must be retained on-site unless the site is considered a "site with restrictions". Volume control was calculated for each development area as outlined below.

Volume control for the proposed development will be provided through rear yard at-surface infiltration trenches, and catchbasin infiltration/filtration trenches. Rear yard at-surface

infiltration trenches will be provided on all split draining lots where feasible. Catchbasin infiltration trenches will be provided wherever there is adequate clearance to the seasonally high groundwater. Catchbasin filtration trenches will be provided where infiltration trenches are not feasible. Catchbasin infiltration/filtration trenches cannot be provided where they would have to cross an intersection or where it would interfere with lot servicing connections. The design of the infiltration and filtration facilities is discussed further in the following sections.

The combined volume provided based on the preliminary BMPs above is 1,229.4 m³ which corresponds to an equivalent depth of rainfall over the total impervious area of 6.4 mm. This achieves Alternative #2 criteria for volume control. Additional volume control cannot be provided due to the high seasonal groundwater conditions, generally low infiltration rate across the site (to be confirmed through detailed design). The number and size of rear yard infiltration trenches has been maximized. The size of the catchbasin infiltration/filtration trenches have been maximized to still achieve relevant sizing criteria and not interfere with required service connections and utilities in the right-of-way. Calculations are provided in Appendix E.

2.5.4 Water Budget

Where feasible, measures to minimize impacts on the water budget will be incorporated into the development design. As noted in the Hydrogeological Study, the estimated existing infiltration volume on the proposed development is approximately 60,883 m³. Without mitigation the proposed development infiltration volume is approximately 31,668 m³. It is anticipated that a proposed infiltration volume of approximately 160,246 m³ can be achieved through the proposed mitigation measures outlined above.

2.5.5 **Phosphorus Budget**

Under the Lake Simcoe Protection Plan, a stormwater management plan must demonstrate how phosphorus loadings are minimized between existing and proposed. The MECP database application Lake Simcoe Phosphorus Loading Development Tool (v2, 01-April-2012 update) was used to complete the phosphorus budget for the proposed development. Due to the complex treatment train provided by the SWM measures outlined above, a spreadsheet based on the MECP database application was developed to determine the existing and proposed phosphorus budget.

Existing Phosphorus Loadings

The existing land uses and areas are shown on **Figure 2.6**. Based on the Phosphorus Loading Development Tool, the existing annual phosphorus loadings were calculated to be 3.72 kg/year. Refer to **Appendix E** for the phosphorus loading tool output.

Proposed Phosphorus Loadings

The proposed land uses for the site are shown on **Figure 2.7**. The proposed phosphorus loading with no BMPs was calculated to be 40.42 kg/yr (refer to **Appendix E**).

The proposed phosphorus loading with the treatment train of BMPs was calculated to be 3.97 kg/yr (see **Appendix E**). In addition to the BMPs, runoff from the site has the opportunity for additional treatment as it is conveyed to the Uxbridge Brook Tributary such as through the

Page 14 Project No. 2099

NHS (Stream Buffer) and through grassed ditches along Centre Road North and through the adjacent property to the east (enhanced grass swales). **Table 2.8** provides a summary of the phosphorus budget calculations.

Table 2.8: Phosphorus Budget Summary

Phos	Phosphorus Loading (kg/yr)				
Existing	Existing Proposed without BMPs				
3.72	40.42	3.97			

Based on the site conditions, the proposed phosphorus export will be approximately 6.7% greater than existing conditions and 90.2% of the unmitigated phosphorus export will be removed by the proposed BMPs and outlet conveyance treatments. All remaining phosphorus exported from the proposed development will be compensated as outlined in the LSRCA Phosphorus Offsetting Policy.

2.6 Wet Stormwater Management Pond 1 Design Criteria

Preliminary wet pond grading is provided on **Figure 2.4**. The preliminary wet pond design was established based on the following general criteria:

- A maintenance access road in accordance with Uxbridge standard US-807 will be provided from a proposed road with a maximum longitudinal slope of 10% and a crossfall of 2% (max). A maximum longitudinal slope of 5% will be used where pedestrian access is anticipated. The maintenance access road will be used to facilitate machinery to access the forebay during scheduled maintenance as well as to access the outlet structure for maintenance purposes;
- A Vortech OGS Unit (or approved equivalent) will be provided upstream of the wet SWM pond per Uxbridge design criteria, preliminary sizing calculations are provided in **Appendix F**;
- A safety shelf with a maximum slope of 6:1 for 3.0 m to either side of the normal water level will be provided;
- A maximum slope of 4:1 will be provided above and below the safety shelf; and
- A maximum slope of 3:1 will be provided as required to match into existing and proposed grades at the edges of the pond block.

2.7 Dry Stormwater Management Pond 1 Design Criteria

Preliminary dry pond grading is provided on **Figure 2.5**. The preliminary dry pond design was established based on the following general criteria:

A 4 m wide maintenance access road will be provided from a proposed road with a maximum longitudinal slope of 10% and a crossfall of 5% (max). The maintenance access road will be used to facilitate machinery to access the facility during scheduled maintenance as well as to access the outlet structure for

maintenance purposes. A 6m radius turning circle will be provided at the downstream end of the facility;

- The pond bottom will have a minimum slope of 0.5% towards the outlet headwall;
- A Vortech OGS Unit (or approved equivalent) will be provided upstream of the dry SWM pond per Uxbridge design criteria, preliminary sizing calculations are provided in **Appendix F**;
- A maximum slope of 4:1 will be provided below the top of pond;
- A maximum slope of 3:1 will be provided as required to match into existing and proposed grades at the edges of the pond block; and
- A grassed filter strip/outfall swale will be provided downstream of the facility to provide additional treatment for low flows.

2.8 Rear Yard At-Surface Infiltration Trenches

Rear yard at-surface infiltration trenches are proposed throughout the site for all split drainage lots where feasible. Overflow from the proposed trenches will drain uncontrolled into the Uxbridge Brook tributary or to the proposed wet SWM Pond or dry SWM Pond.

The trenches will be located beneath the rear yard swales, covered by approximately 0.15 m of topsoil. Based on the design infiltration rate of 12 mm/hr, a maximum trench depth of 0.6m can be infiltrated with 48 hours. The rear yard infiltration trenches will provide sufficient storage volume to infiltrate the 25mm storm event over the rear roof area of the lot. This corresponds to a total infiltration volume of approximately 560.6 m³ provided by the rear yard at-surface infiltration trenches. Preliminary maximum infiltration trench dimensions based on lot frontage are provided in **Table 2.9** below. Refer to **Figure 2.8** for rear yard at-surface infiltration trench details, calculations are provided in **Appendix E**.

Table 2.9: Rear Yard At-Surface Infiltration Trench Dimensions

Maximum Trench Dimensions						
Minimum Typical Lot Frontage (m)	Length (m)	Width (W)	Depth (m)	Maximum Infiltration Volume Provided (m³)		
10.4	9.4	1.5	0.6	3.4		
11.5	10.5	1.5	0.6	3.8		
13.4	12.4	1.5	0.6	4.5		

2.9 Catchbasin Infiltration and Filtration Trenches

Catchbasin infiltration and filtration trenches are proposed to provide treatment of runoff from the road right-of-way and lots within the proposed development. Runoff entering deep sump catchbasins will be directed through a catchbasin pretreatment device (e.g. goss trap, CB Shield, Litta Trap, etc.) before entering a lead directed to the trenches. Runoff in excess of the capacity of the lead, or if an infiltration trench has reached capacity, will be directed through an overflow lead into the minor system. The trenches will be located beneath the right-of-way boulevards. The proposed subdivision right-of-way is discussed further in **Section 6.0**.

Based on the design infiltration rate of 12 mm/hr, a maximum trench depth of 0.6 m can be infiltrated with 48 hours. The catchbasin infiltration trenches will be composed of washed clear stone with approximate dimensions of 0.6 m deep and 1.0 m wide. Approximately 235 m of infiltration trench is proposed, the length of individual infiltration trenches will vary based on catchbasin spacing and tributary area. This corresponds to a total provided infiltration volume of 56.4 m³. Refer to **Figure 2.9** for catchbasin infiltration trench details, calculations are provided in **Appendix E**.

The catchbasin filtration trenches will be composed of 0.6 m of washed clear stone on top of 0.4 m of brick sand and will be approximately 1.0 m wide. A perforated drain within the brick sand layer connected to the minor system will be provided at the downstream end of the filtration facility. Approximately 1,565 m of filtration trench is proposed, the length of individual filtration trenches will vary based on catchbasin spacing and tributary area. This corresponds to a total provided filtration volume of 626.0 m³. Within catchment 204, approximately 470 m of filtration trench is proposed (188.0 m³ of filtration volume) to provide the required quality control volume (182.7 m³). Refer to Figure 2.9 for catchbasin filtration trench details, calculations are provided in **Appendix E**.

2.10 Storm Servicing

The storm sewer system (minor system) will be designed for the 5 year storm event as per the Township of Uxbridge standards.

The storm sewer system will typically be designed with grades between 0.5% and 4%. Throughout the proposed development, the storm sewer will be constructed at a minimum depth of 1.5 m to obvert to provide frost protection and at sufficient depth to accommodate foundation drains where connections are required. The preliminary layout for the proposed storm sewer within the proposed development is provided on **Figure 2.2**. The storm drainage system will be designed in accordance with the Township of Uxbridge and MECP guidelines, including the following:

- Pipes to be sized to accommodate runoff from a 5 year storm event,
- → Minimum Pipe Size: 300 mm diameter,
- ► Maximum Flow Velocity: 4.5 m/s,
- → Minimum Flow Velocity: 0.75 m/s,

The rainfall intensity will be calculated as follows, where 'i' is the rainfall intensity (mm/hour) and A, B, and C are as per Table 2.10:

$$i = A / (T_c + B)^c$$

Table 2.10: Rainfall Intensity Parameters

Return Period Storm	A	В	C
2 Year	645	5	0.786
5 Year	904	5	0.788
10 Year	1065	5	0.788
25 Year	1234	4	0.787
100 Year	1799	5	0.810

Preliminary sizing calculations were prepared for sizing the storm sewers entering the proposed wet SWM pond and dry SWM pond. The design sheet is provided in **Appendix D**.

2.11 Overland Flow

Major system flows (greater than the 5 year up to the 100 year storm event) will be conveyed within the road right-of-ways and laneways to suitable outlets. Right-of-way capacity calculations are provided in Appendix D.

An overland flow route is provided west of the NHS to convey major system flows to the wet SWM Pond. The overland flow route doubles as the access road to the pond. A 0.3m deep channel will convey flows to the downstream end of the forebay. Calculations are provided in Appendix D.

East of the NHS, major system flows will be conveyed to low points on Street 'J' and Street 'M'. Overland flow routes will convey major system flows to the dry pond. The overland flow route from Street 'M' will be located in a 6m wide block between two proposed lots. Calculations are provided in **Appendix D**.

A 600 mm diameter HDPE bypass storm sewer is proposed to convey the external and rear yard flows from Catchment 202 to the existing wetland. The culvert will convey the peak flow from the greater of the 100 year and Regional storm events. Conveyance calculations are provided in **Appendix D**.

2.12 Stormwater Management and Servicing Phasing

The stormwater management and servicing of Phase 1 of the proposed development will be able to proceed without any Phase 2 infrastructure. The proposed stormwater management infrastructure (Dry SWM Pond 1, catchbasin filtration trenches, and rear yard infiltration trenches) and storm sewer system are independent of Phase 2. The bypass storm sewer will be constructed as part of Phase 2 as the crossing is not required until the Phase 2 subdivision has been constructed.

3.0 SANITARY SERVICING

3.1 Existing Sanitary Sewer System

Existing sanitary sewers are located on Oakside Drive and Bolton Drive to the south of the proposed development. The existing sanitary sewer system is illustrated on **Figure 3.1.** The anticipated flows from the proposed development were not included in the design of downstream infrastructure (refer to Drawing SAN for the Mason Lands Phase 1 development in **Appendix B**). A capacity analysis based on the proposed sanitary sewer system was undertaken and is discussed further below.

3.2 Proposed Sanitary Sewer System

The preliminary layout for the proposed sanitary sewer within the proposed development is provided on **Figure 3.1**.

The sanitary sewers within the proposed development will have slopes ranging between 0.5% and 4% (typically) and will be provided at 3 m to 6.5 m deep. Approximately 350 m of sanitary sewer will be provided on 6th Concession to service the proposed townhouses fronting onto the road.

The sanitary sewer system will be designed in accordance with the Region of Durham and MECP criteria, including but not limited to:

- Residential Sanitary Generation Rate: 364 l/c/d,
- Population Density:
 - \circ Townhouse 3.0 people/unit,
 - o Single Detached 3.5 people/unit
- Peaking Factor: Harmon (Max. 3.8, Min 1.5),
- Infiltration Rate: 0.26 L/s/ha,
- → Minimum Pipe Size: 200 mm diameter,
- Minimum Actual Velocity: 0.60 m/s, and
- Maximum Velocity: 3.65 m/s.

An area of 31.81 ha comprised of 69 townhouses and 521 single detached dwellings (total population 2,031) will be serviced as part of the proposed development. A preliminary sanitary sewer design sheet is provided in **Appendix G**.

External sanitary sewer options evaluated to service the proposed development include:

- 1) Bolton Drive System The Bolton Drive sanitary sewer elevation is too high to feasibly connect the eastern half of the site. Additionally, a portion of the Bolton Drive sanitary sewer which crosses the Uxbridge Brook tributary was built at a shallow slope (0.3%) such that there is limited capacity available for even a portion of the proposed development (refer to Drawing P-101 in **Appendix B**). Downstream sewer sizes on this system also decrease in size, thereby further limiting capacity.
- 2) Oakside Drive System The Oakside Drive system has some existing residual capacity and is described in further detail in **Section 3.3** below.

3) Future Mason Phase 2 development immediately east of the proposed development - The future Mason Phase 2 development has been accommodated with a connection to the existing sanitary sewer system on Apple Tree Crescent. A further analysis is included below in **Section 3.3**.

An analysis of the potential external sanitary servicing options for the proposed development is provided below.

3.3 External Sanitary Servicing

An excerpt of the Township of Uxbridge Sanitary Sewerage System map (dated March 22, 2019) has been provided in **Appendix G** which shows the existing sanitary sewer system downstream of the proposed development.

As identified in **Section 3.2** there are two viable potential options for connecting the proposed development to the existing sanitary sewer system: connecting to the existing 200 mm diameter sanitary sewer located at the intersection of Centre Road and Oakside Drive (MH 113), or connecting to the future Mason Lands Phase 2 sanitary sewer. The Mason Lands Phase 2 sanitary sewer will connect to the existing 250 mm diameter sanitary sewer on Apple Tree Crescent (MH 008), refer to Drawing SAN for the Mason Lands Phase 1 development in **Appendix B**. Both existing sanitary sewers convey flows to Ash Green Lane which ultimately connects to the Uxbridge Water Pollution Control Plant.

As shown on the Mason Phase 1 sanitary drainage plan referenced above, the Oakside Drive sanitary sewer was not sized in anticipation of external flows however there is some inherent residual capacity remaining in the system based on the original Apple Tree Crescent sanitary sewer design (12.90 ha and a population of 800 persons).

As shown on **Figure 3.1**, the sanitary sewer to Oakside Drive would be constructed on Centre Road. An existing box culvert conveys the flows of the Uxbridge Brook Tributary from west to east across Centre Road and is located between Oakside Drive and the Centre Road intersection of the proposed development. The existing culvert has an upstream invert of 281.31 m, a downstream invert of 280.94 m, and a road surface elevation of approximately 284.5 m. There is insufficient clearance above the box culvert for the sanitary sewer to cross and maintain minimum frost cover and separation from the obvert of the culvert, therefore an inverted siphon would be required for the crossing which would pass beneath the existing culvert and continue to drain by gravity to the existing Oakside Drive sanitary sewer.

Alternatively the proposed development can connect across the proposed intersection at Centre Road to the Phase 2 Mason development, however the timing of this development is unknown and so a connection may not be available when required by the proposed development.

A capacity analysis of the two different connection options was undertaken to confirm the capacity of the downstream sanitary sewer systems and to identify any potential infrastructure upgrades to support the construction of the proposed development. Phase 1 of the proposed development, which has an area of approximately 6.17 ha and a population of 360.5 persons, was also analysed. In total, four different capacity analyses were performed:

- Option 1 Phase 1 proposed development to Oakside Drive
- Option 2 Phase 1 proposed development to Mason Lands Phase 2
- Option 3 Ultimate proposed development to Oakside Drive
- Option 4 Ultimate proposed development to Mason Lands Phase 2

For clarity, Options 1 and 3 include only flow contribution from the proposed development. Options 2 and 4 include flow contribution from the proposed development and the Mason Phase 2 lands.

The Township of Uxbridge sanitary map has been modified to provide summary figures for each of the scenarios above which show the sections of sanitary sewer where capacity is exceeded (coloured red) or close to being exceeded (85% to 100% capacity, coloured yellow). The figures and preliminary design sheets have been provided in **Appendix G**. The sewers where the capacity is exceeded will need to be upgraded in order to convey the sanitary flows from the proposed development and/or the Mason Phase 2 development. The sanitary sewer upgrades resulting from the capacity analysis have been summarized below for the four scenarios analysed:

- → Option 1 180m of sewer exceeding capacity
- Option 2 260m of sewer exceeding capacity, 182m close to exceedance
- Option 3 1380m of sewer exceeding capacity, 95m close to exceedance
- \longrightarrow Option 4 1115m of sewer exceeding capacity

In general Option 1 and Option 2 result in minimal surcharging of the sanitary sewer system on Dallas Street where the sewer was constructed at very shallow slopes (<0.4%), otherwise the system has sufficient capacity to convey the proposed flows. Option 3 and Option 4 require modifications to a significant length of the existing sanitary sewer system from Ash Green Lane to Dallas Street.

An HGL analysis was performed for Option 1. Based on the analysis there will be no anticipated negative impacts on upstream properties due to the anticipated surcharging. The analysis has been provided in **Appendix G**.

Consideration should be given to conducting a sanitary flow monitoring program to confirm actual flow rates in the existing sanitary sewers. If the actual flow rate is lower than the Region's theoretical design criteria, the required modifications to the existing sewer could be reduced. For example, under Option 3, by reducing the average domestic flow to 275 L/cap/day the length of sewer exceeding capacity is reduced to 640m.

Should the confirmation of existing flow rates be an acceptable approach to Durham Region, coordination with the Region will continue through the draft plan approval process to confirm the scope of the sanitary flow monitoring program.

3.4 Servicing Allocation

Durham Region operates the water supply and treatment infrastructure as well as the wastewater collection and treatment systems. As such, Durham Region provides bulk servicing allocation to the Township of Uxbridge. The Township of Uxbridge Council provides Servicing Allocation to individual development applications.

Wastewater servicing allocation is the limiting factor in the Township of Uxbridge. Servicing allocation is based on the capacity of the Uxbridge Brook Water Pollution Control Plant (WPCP). The WPCP current capacity is 15,000 people. The Region is currently undertaking a planned upgrade to the oxygenation system which could increase the current capacity to 16,470 people.

Uxbridge has been divided into two phasing areas. Phase 1 is the current Urban Area boundary and includes some potential infill and intensification areas. Phase 2 includes three proposed development properties outside of the current Urban Area as identified in the Township's Development Services – Planning staff report DS-03/19:

- 1) 1,905 people Mediterra 7370 Centre Rd (proposed development, current draft plan proposes a population of 2,031 per **Section 3.2**)
- 2) +/- 910 people Mason 7309 Centre Rd
- 3) +/- 1,245 people Furlan E. of Conc. 7, S. or Enzo Cres.

The following existing and proposed population statistics were identified in the Township's Development Services Planning Report DS 03/19 dated January 21, 2019:

- 11,520 Current population estimate in Uxbridge (serviced)
- 555 Current population estimate in Uxbridge (un-serviced)
- → 600 Allocation for Downtown Uxbridge
- → 150 Allocation for Long Term Care Facility
- → 225 Allocation for public lands
- → 444 Unbuilt Residential Development with Sanitary Capacity Allocated by the Region (Registered/Agreement)
- → 680 Unbuilt Residential Development Approved by the Township or OMB (Conditional)
- → 535 Phase 1 Potential Residential Development (Active applications or preconsultation)
- → 16,470 Anticipated 2031 population forecast for Uxbridge and also the anticipated capacity of the WWTP upon completion of the current upgrade
- 1,761 Remaining capacity to service the Phase 2 lands.

Based on the anticipated total Phase 2 population values noted above, there will be a Servicing Allocation shortfall of approximately 2,425 people based on the currently anticipated WPCP capacity (2,031+910+1,245-1,761). Based on the currently anticipated available servicing capacity of 16,470 people, the following options are available to service the proposed development, along with the remaining Phase 2 area:

- Durham Region to pursue a WPCP expansion through completion of a Class EA and an update of the Environmental Compliance Approval with the objective of servicing the entire Phase 2 population;
- Durham Region to investigate opportunities to re-rate the existing WPCP to maximize the servicing capacity, up to the full Phase 2 population if possible (may include stress testing the existing facility and possible incorporation of inflow/infiltration reduction measures or water use reduction measures);

- Utilize (borrow) a portion of the Phase 1 reserved servicing allocation to advance Phase 2 lands prior to implementing further WPCP improvements;
- Utilize private communal wastewater treatment facilities in portion of the Phase 2 lands (subject to a detailed site assessment to confirm this is a suitable approach), beyond the overall available WPCP capacity; or
- Combinations of the options above.

4.0 WATER SUPPLY AND DISTRIBUTION

4.1 Existing Water Distribution

The existing watermain system extends to the intersections of Bolton Drive and 6th Concession Road and Oakside Drive and Centre Road North. The existing watermain system is illustrated on **Figure 4.1**.

The Quaker Hill reservoir and Quaker Hill pumping station are immediately south of Bolton Drive fronting onto 6th Concession. The proposed development is bisected by the U1 and U2 pressure zones. Refer to **Appendix B** for the Township of Uxbridge (West) Water Supply System map. The U1 reservoir high water level (static HGL) is 330.6 m and has approximate maximum ground level service elevation of 300m. The U2 reservoir high water level (static HGL) is 362m and has an approximate maximum ground level service elevation of 330.5m.

4.2 Proposed Water System

The preliminary layout for the proposed watermain system is provided on **Figure 4.1.** The development is proposed to be serviced as follows:

- Connection to the existing 300 mm diameter watermain on 6th Concession; and
- Connection to the existing 300 mm diameter watermain on Centre Road North.

The watermain will be extended by approximately 610 m along 6th Concession from Bolton Drive, to service the proposed development. The watermain will be extended by approximately 320 m on Centre Road to the proposed Street J intersection. An interconnection can be provided for the future Phase 2 Mason Lands development.

A watermain loop will be provided between Street 'L' and Street 'J' within a 6 m wide servicing easement. In support of Phase 1 of the proposed development a secondary connection will be provided to Centre Road from Street 'L' within a 6 m wide servicing easement.

Through discussions with the Region it is understood that the following Regional infrastructure upgrades are required to accommodate Phase 2 of the Township of Uxbridge Master Plan:

- Additional wells for water supply. (Project is identified in 2018 DC and current Budget/Forecast)
- Additional Zone 1 water Storage. (Project is identified in 2018 DC and current Budget/Forecast)
- Additional Zone 2 pumping capacity at the Quaker Hill Reservoir & Pumping Station. (Project is not identified in 2018 DC and current Budget/Forecast)

An analysis of the site water distribution network was completed by Municipal Engineering Solutions. A copy of the analysis is included in **Appendix H**. The analysis identified issues with servicing phase 2 of the proposed development where road surface elevation exceeds the current servicing provided by Zone U2 (centerline elevation of approximately 330.5m) which is consistent with the required infrastructure upgrades noted by the Region above. Phase 1 of the analysis can be serviced by the existing Zone U1 pressures. Further analysis of the complete

water model of the Township is recommended to account for pressure variations not captured by the hydrant tests performed in support of the analysis as well as the typical operation of the Township's water system.

Coordination with the Region will continue through the draft plan approval process to confirm implementation timing of the required upgrades as well as additional analysis to confirm the water servicing of the site.

The watermain system will be designed in accordance with the Region of Durham and MECP criteria including:

- Residential water usage rate: 450 L/c/d,
- Population Single Family Dwelling: 3.5 persons/unit;
- Townhouse Dwelling: 3.0 persons/unit;
- Minimum Residential Pipe Size: 150 mm diameter;
- Minimum Pipe Depth: 1.8 m;
- Maximum of 20 houses on a dead end section; and
- Maximum Hydrant Spacing: 150 m.

A closed valve will be provided on Street 'J' at the break between Zone U1 and Zone U2 as noted on **Figure 4.1**.

5.0 **GRADING**

5.1 **Existing Grading Conditions**

The existing topography has slopes in the range of 0.5% to 25%. The ground surface elevations through the proposed development range from approximately 335 m in the northwest corner to approximately 282.5 m in the southeast corner.

5.2 **Proposed Grading Concept**

In general, the proposed development will be graded in a manner which will satisfy the following goals:

- Satisfy the Township of Uxbridge lot and road grading criteria including:
 - Minimum Road Grade: 0.5%
 - Maximum Road Grade: 5.0%
 - Minimum Lot Slope: 2%
 - Maximum Lot Slope: 5%
 - Maximum Lot Grade: 12% (calculated from difference in lot elevations between the rear wall of the house and property line – embankments included)
 - Maximum slope between terraces and embankments shall be 3:1 when vertical difference does not exceed 1 metre and 4:1 otherwise.
- Provide continuous road grades for overland flow conveyance;
- Minimize the need for retaining walls;
- Minimize the volume of earth to be moved and minimize cut/fill differential;
- Minimize the need for rear lot catchbasins; and
- Achieve the stormwater management objectives required for the proposed development.

A preliminary grading plan is provided on **Figure 5.1**.

The change in elevation across the site is substantial. For the main road which bisects the proposed development (Street 'J'), the western intersection with 6th Concession has an elevation of approximately 334.6 m and the eastern intersection with Centre Road North has an elevation of approximately 287.8 m (46.8m difference). The difference in elevation across the site has been considered in the preliminary grading plan and results in maximum road grades and grade change accommodation through both built form and retaining walls.

In order to match into the existing road at the site boundaries and NHS, the required road grade across the site utilizes the maximum allowable grade, with all roads that have an east-west alignment at a grade of 5% to the extent possible. The municipal design criteria limitations of the centerline grading result in significant areas of cut and fill throughout the site with a maximum proposed cut depth of approximately 5.0 m and a maximum proposed fill depth of approximately 6.3 m. A slightly steeper road slope than the current municipal design criteria (i.e. 6.0%) would significantly minimize the proposed cut and fill volumes and would also minimize retaining walls and significant grade drops through built form (i.e. reduction in deck requirements). This will be discussed further with Township staff through the draft plan approval process and can be implemented at the detailed design stage.

Retaining walls are proposed in one location (south retaining wall shown on **Figure 5.1**). The south retaining wall is approximately 190 m long with a maximum height of 3.9 m. In order to reduce the height of the retaining wall, embankment grading is proposed to within 5m of the NHS. Sloping is required into the NHS around the Street 'I' cul-de-sac. Per the Beacon Environmental Impact Study, the NHS in this area (HDF2) is described as ephemeral and will be compensated for accordingly (refer to relevant excerpts in **Appendix B**). The increase in allowable maximum road slope recommended above would also reduce the height and extents of the proposed retaining wall and sloping.

At the detailed design stage, the preliminary grading shown on **Figure 5.1** will be subject to a more in-depth analysis in an attempt to balance the cut and fill volumes and minimize slopes and walls.

6.0 RIGHT-OF-WAYS AND SIDEWALKS

The proposed road network of the proposed development is composed of 20.0 m right-of-ways and two 6.0 m laneways.

The 20.0 m right-of-way will be the Township standard which has been modified to incorporate a catchbasin infiltration/filtration trench. The location of the trench is such that none of the standard geometry or service locations require modification. Sidewalk will be provided on the same sides of the right-of-way as the watermain to avoid conflicts with the proposed catchbasin infiltration/filtration trenches.

The 6.0 m laneway will have the same pavement and utility geometry as the City of Markham's 8.5 m laneway standard. The lane lights and utilities required in the City of Markham standard have been incorporated into the lot footprint and will be accessible via a blanket easement across the frontage of the units. No servicing connections will be made from the laneways to the proposed laneway townhouses. The driveway setbacks for the proposed laneway match the City of Markham standard which provides sufficient access for laneway garages. Laneway garages are proposed on the west side of the laneway only, the eastern lots backing onto the laneway will have driveway and garage access from their eastern frontage.

The proposed right-of-way cross-sections are provided in **Appendix I**.

7.0 EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION

During the detailed design stage, erosion and sediment control measures will be designed with a focus on erosion control practices (such as stabilization, track walking, staged earthworks, etc.) as well as sediment controls (such as fencing, mud mats, catchbasin sediment control devices, rock check dams and temporary sediment control ponds). These measures will be designed and constructed as per the "Erosion and Sediment Control Guide for Urban Construction" document (TRCA, 2019). A detailed erosion and sediment control plan will be prepared for review and approval by the Municipality and Conservation Authority prior to any proposed grading being undertaken. This plan will address phasing, inspection and monitoring aspects of erosion and sediment control. All reasonable measures will be taken to ensure sediment loading to the adjacent watercourses and properties are minimized both during and following construction.

8.0 SUMMARY

This Functional Servicing and Stormwater Management Report has been prepared in support of the Draft Plan of Subdivision application for the proposed 7370 Centre Road development in the Township of Uxbridge. The purpose of this report is to demonstrate that the development can be graded and serviced in accordance with the Township of Uxbridge, Lake Simcoe Region Conservation Authority (LSRCA), Region of Durham, and the Ministry of Environment, Conservation and Parks (MECP) design criteria.

General Information

- The existing land use is comprised of agricultural land and natural heritage system;
- The proposed development is located in the Uxbridge Brook subwatershed;
- The proposed development consists of low and medium density residential, parks, natural heritage system, stormwater management block, and road and laneways; and
- Construction of the proposed development will potentially be phased with Phase 1 consisting of the lands east of the NHS and Phase 2 consisting of the lands west of the NHS.

Stormwater Management and Storm Servicing

- Quality Control: MECP Enhanced (Level 1) water quality protection will be provided for the west half of the proposed development by a proposed Wet SWM Pond 1. Quality control will be provided for the east half of the proposed development by catchbasin filtration trenches in the right-of-way boulevard;
- Erosion Control: The runoff volume from a 40 mm rainfall event will be detained over 24 hours for the west half of the proposed development by Wet SWM Pond 1 and for the east half of the proposed development by the Dry SWM Pond 1;
- Quantity Control: Quantity control will be provided for the west half of the proposed development by Wet SWM Pond 1 and for the east half of the proposed development by Dry SWM Pond 1 to control peak flows for the 2 through 100 year storm events;
- Volume Control: The combined volume provided based on the preliminary BMPs is 1,229.4 m³ which corresponds to an equivalent depth of rainfall over the total impervious area of 6.4 mm. This achieves Alternative #2 criteria for volume control. The proposed development is considered a site with restrictions due to proximity to seasonally high groundwater, and low infiltration rates;
- Water Budget: A water budget analysis was completed to demonstrate that the proposed annual infiltration volume will be greater than the existing annual volume;
- Phosphorus Budget: A phosphorus budget analysis was completed using the MECP phosphorus budget tool, which shows that the unmitigated phosphorus export will be reduced by approximately 90.2% through the use of BMPs throughout the proposed development including: rear yard at-surface infiltration trenches, catchbasin infiltration/filtration trenches, a wet SWM pond, a dry SWM pond, and a grassed filter strip;
- Storm Servicing:
 - Storm runoff will be conveyed by storm sewers designed in accordance with Township of Uxbridge and MECP criteria;
 - Storm sewers will generally be designed for the 5 year storm event; and
 - Adequate 100 year overland flow routes will be provided.

Existing external drainage will be accommodated through the proposed development via a bypass storm sewer crossing Street 'J'.

Sanitary Sewage Disposal

- There are existing municipal sanitary sewers on Bolton Drive and Oakside Drive;
- A potential sanitary sewer connection can be made through the future Phase 2 Mason Lands development;
- The existing downstream sanitary sewer systems were not sized to convey flows from the proposed development, a capacity analysis was prepared to determine remaining capacity in the downstream Mason Phase 1 development system and potential required modifications based on a phased buildout of the proposed development.
- A sanitary monitoring program is proposed to confirm actual sanitary flow rates to reduce the amount of sanitary sewer replacement required to convey flows from the proposed development and Mason Phase 2 development.
- A servicing allocation shortfall is noted in the existing Uxbridge Water Pollution control plant for servicing the entirety of the Uxbridge Phase 2 development area. Several options are presented that allow for the proposed development to proceed.
- Sanitary allocation is required from the Town.

Water Supply

- There are existing municipal watermains on 6th Concession and Centre Road North;
- The development is proposed to be serviced with a connection to the existing watermains on 6th Concession and Centre Road North;
- Municipal Engineering Solutions has completed a watermain hydraulic analysis to show that there is sufficient domestic and fire flows to service the development; and
- Water supply allocation is required from the Town.

Grading

- The proposed development grading has been developed to match to the existing surrounding grades, and provide conveyance of stormwater runoff, including external drainage:
- The road slope has been maximized based on Township criteria to minimize cut and fill throughout the proposed development, an exception to this criteria to increase the allowable slope is recommended and requires further discussion with Township staff;
- Retaining walls are proposed in one locations with a maximum height of 3.9 m; and
- The lot grading will be subject to further grading design at the detailed design stage.

Right-of-Ways and Sidewalks

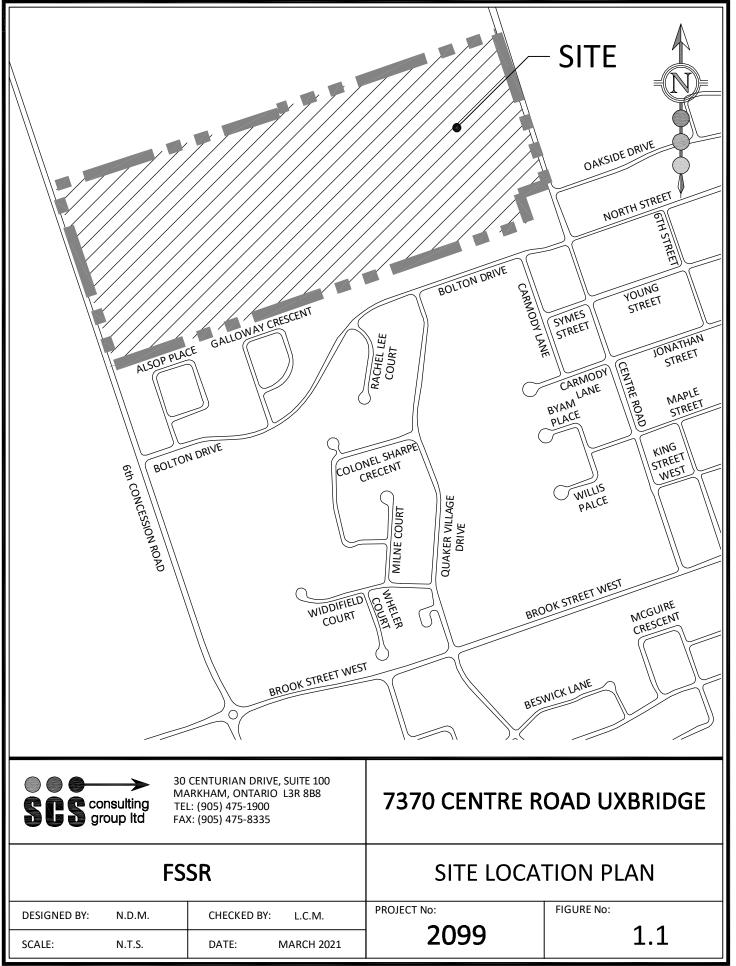
- The proposed municipal roads will be a 20.0 m right-of-way that follows the Township of Uxbridge standards, and has been modified to include BMP measures; and
- → A 6.0 m laneway is proposed based on the City of Markham 8.5 m laneway standard.

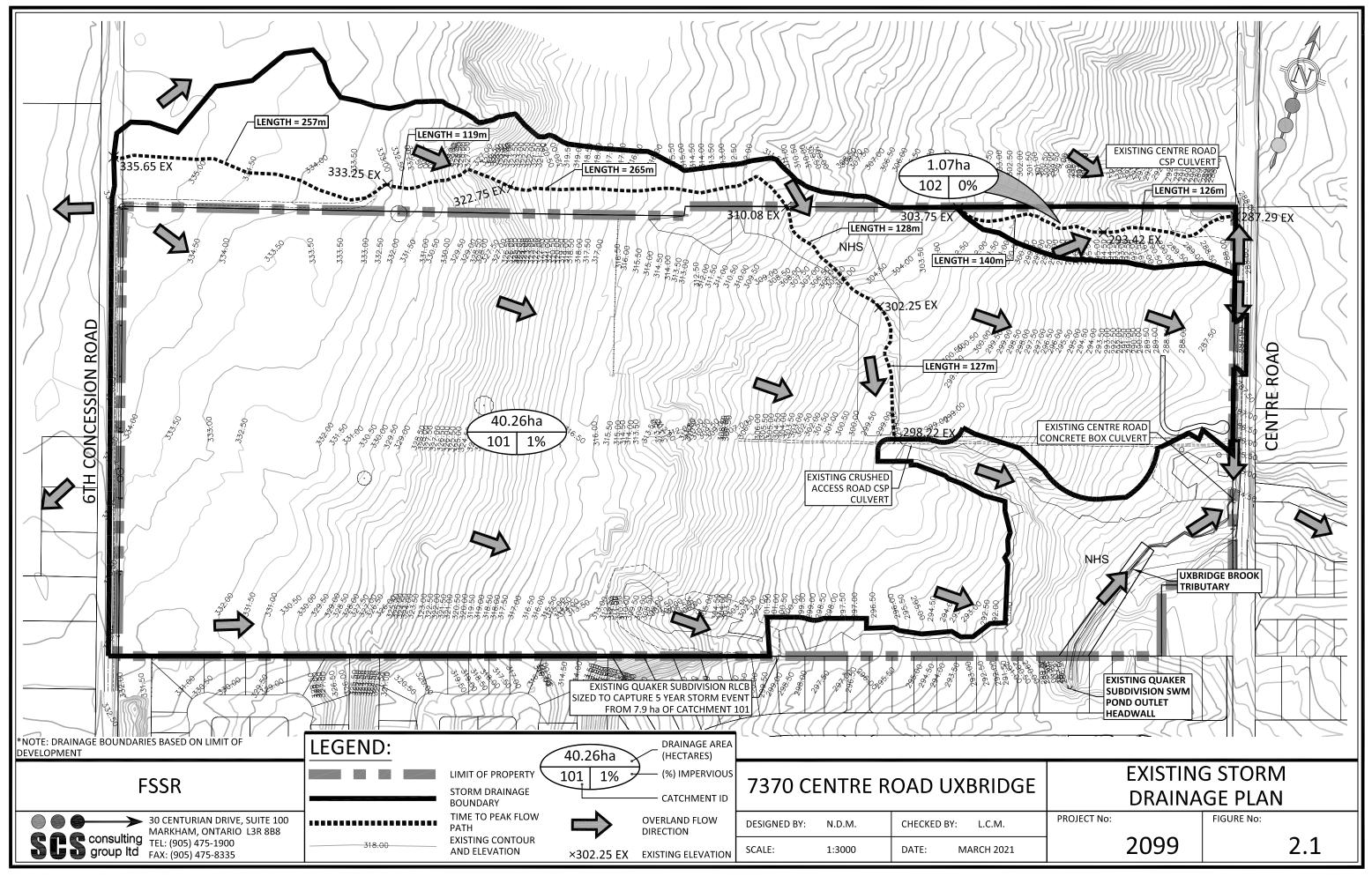
Erosion and Sediment Control during Construction

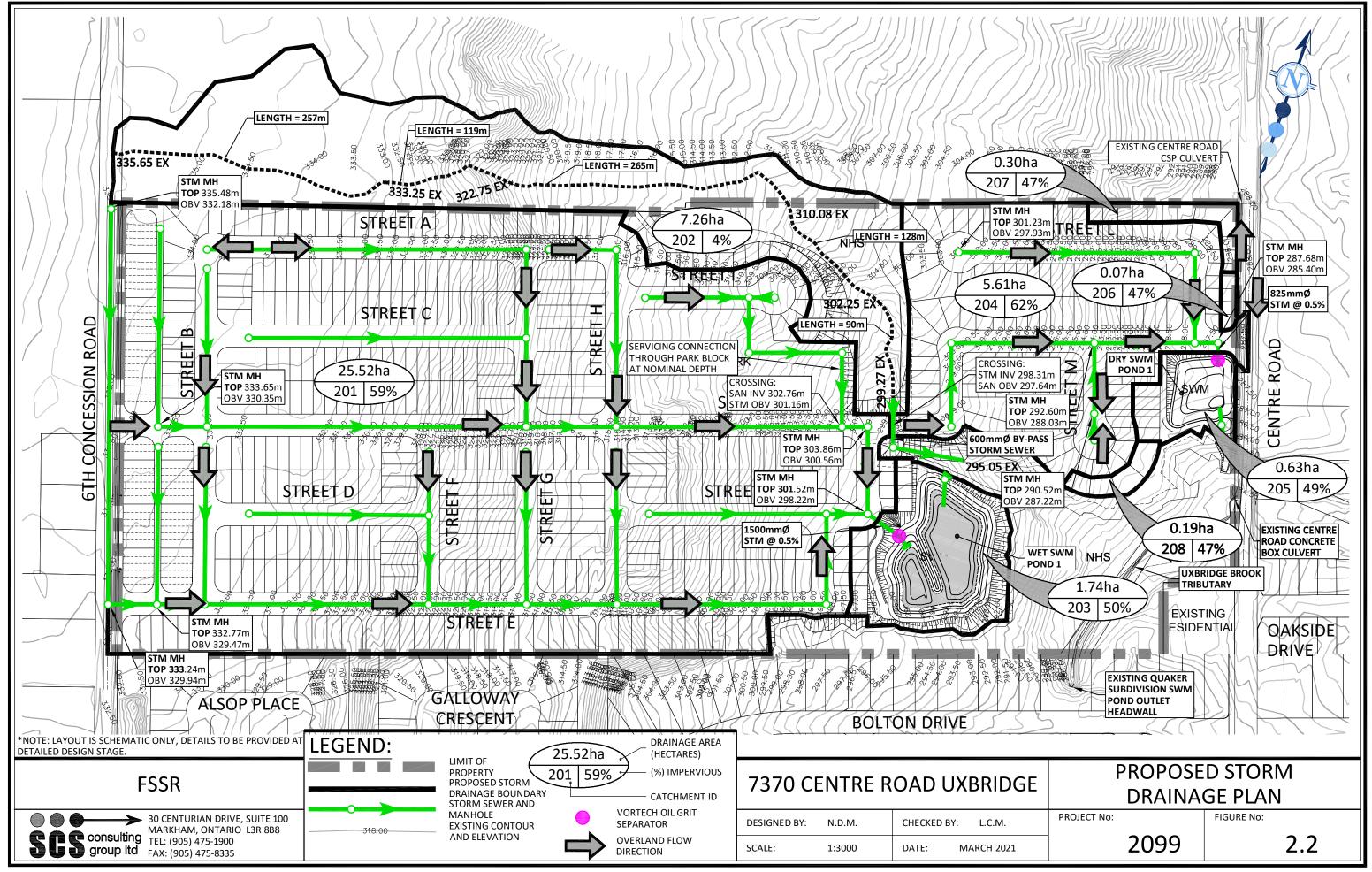
An erosion and sediment control plan will be prepared at the detailed engineering stage, in accordance with the "Erosion and Sediment Control Guide for Urban Construction" document (TRCA, 2019).

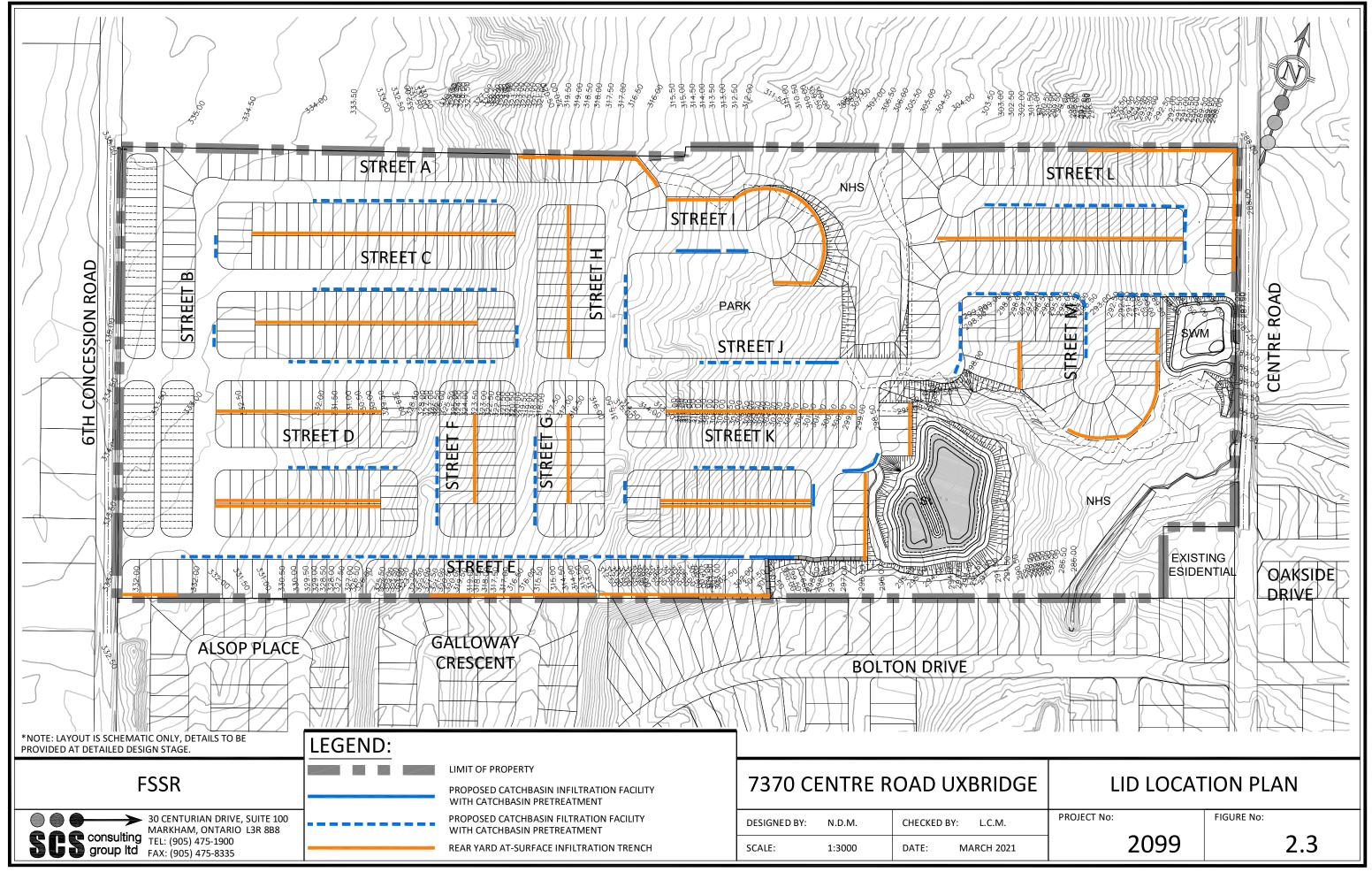
Respectfully Submitted:

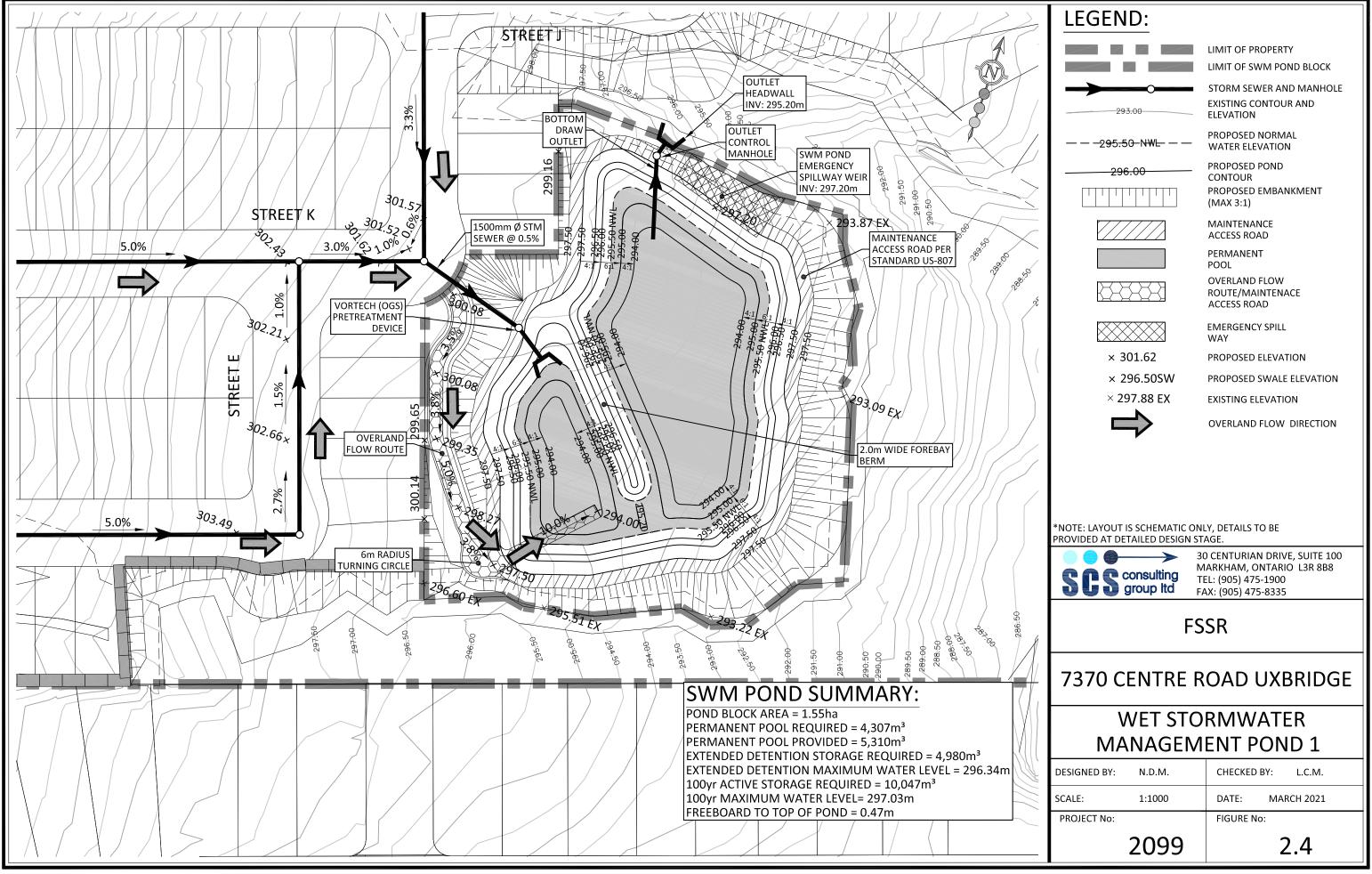
SCS Consulting Group Ltd.

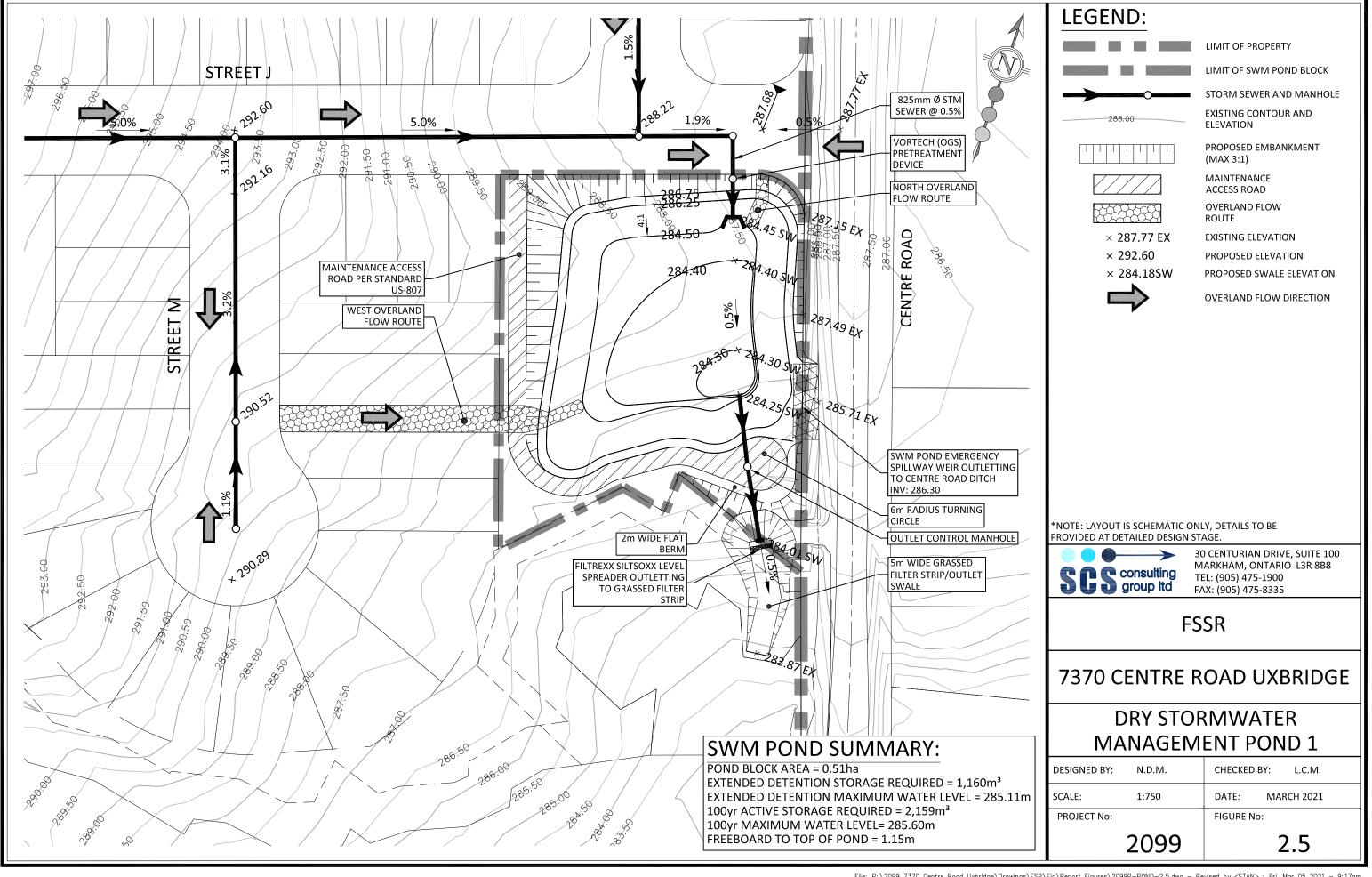

Colby Maier-Downing, E.I.T.

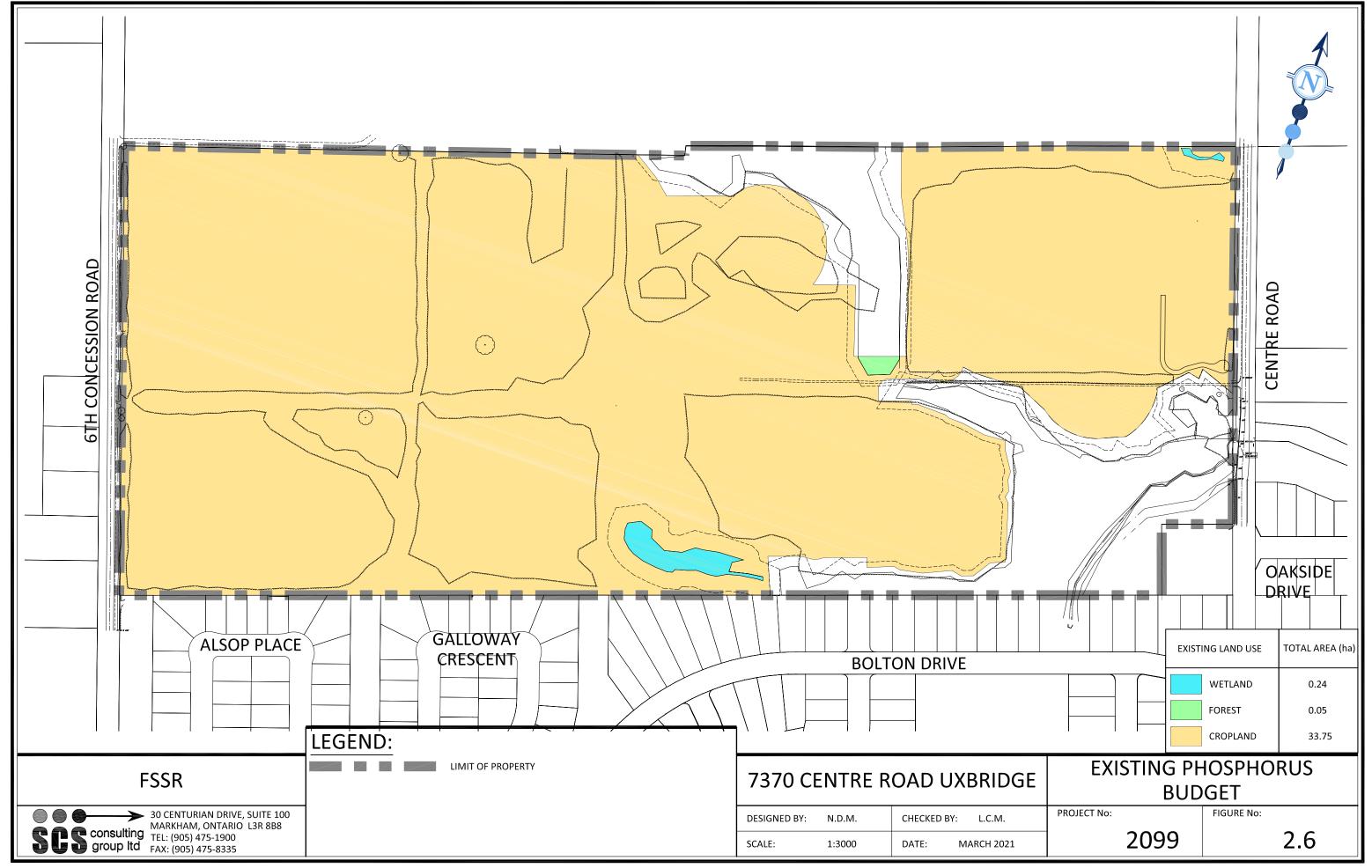

hy Mr. hijs

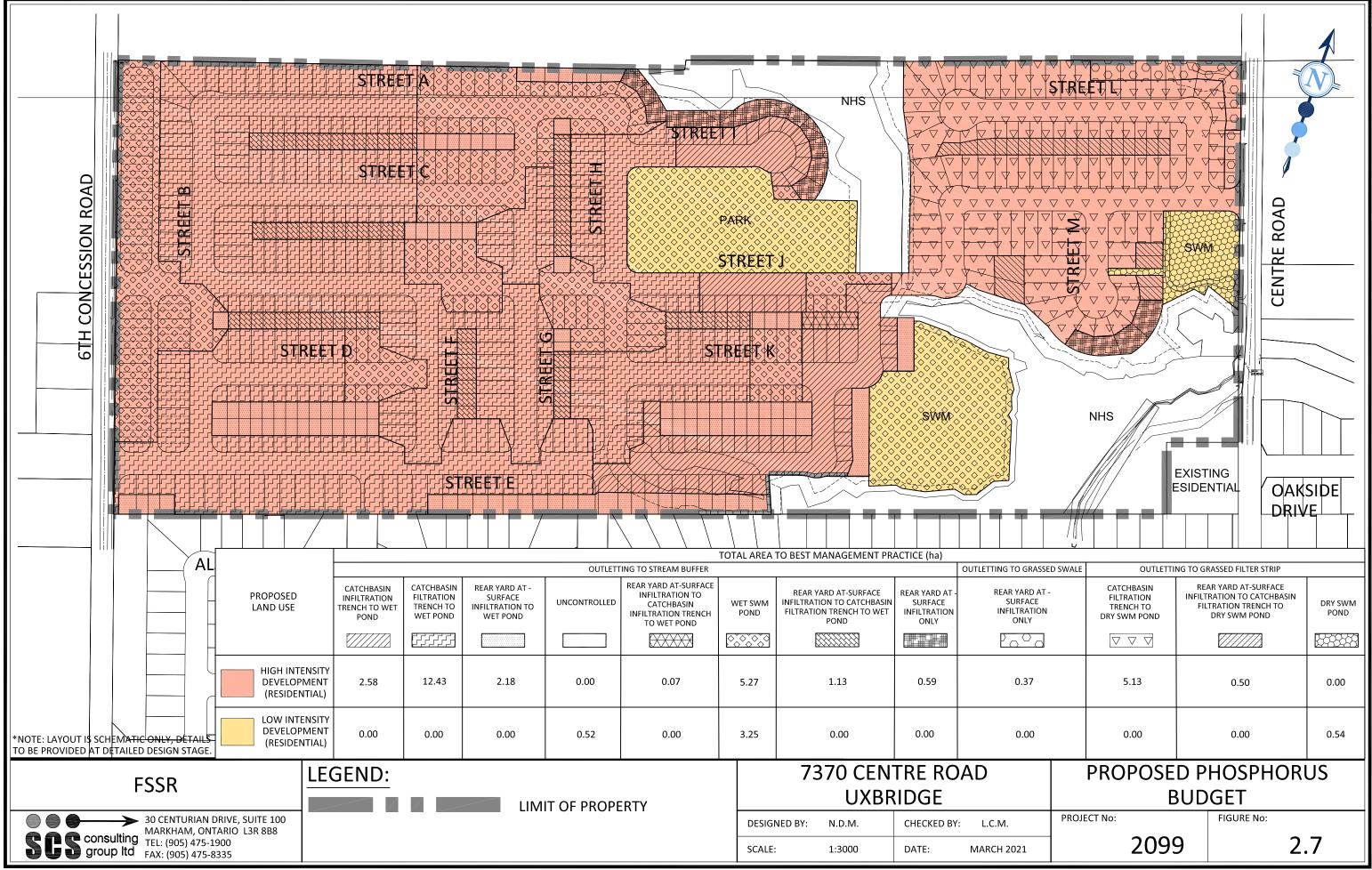

cmaier-downing@scsconsultinggroup.com

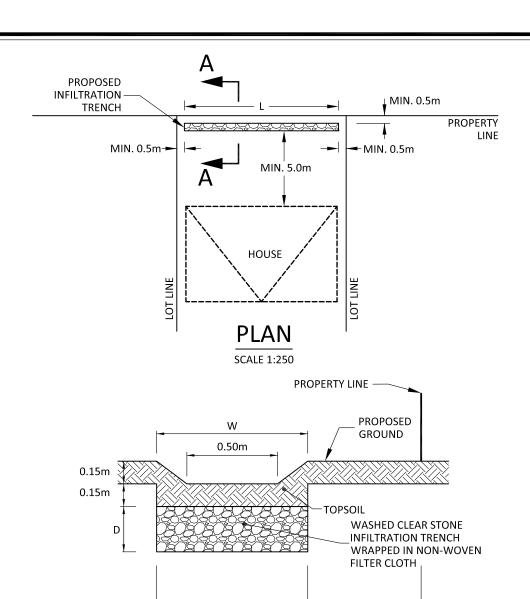

PROFESSIONAL PROFE


Nicholas McIntosh, M.A.Sc., P. Eng. nmcintosh@scsconsultinggroup.com

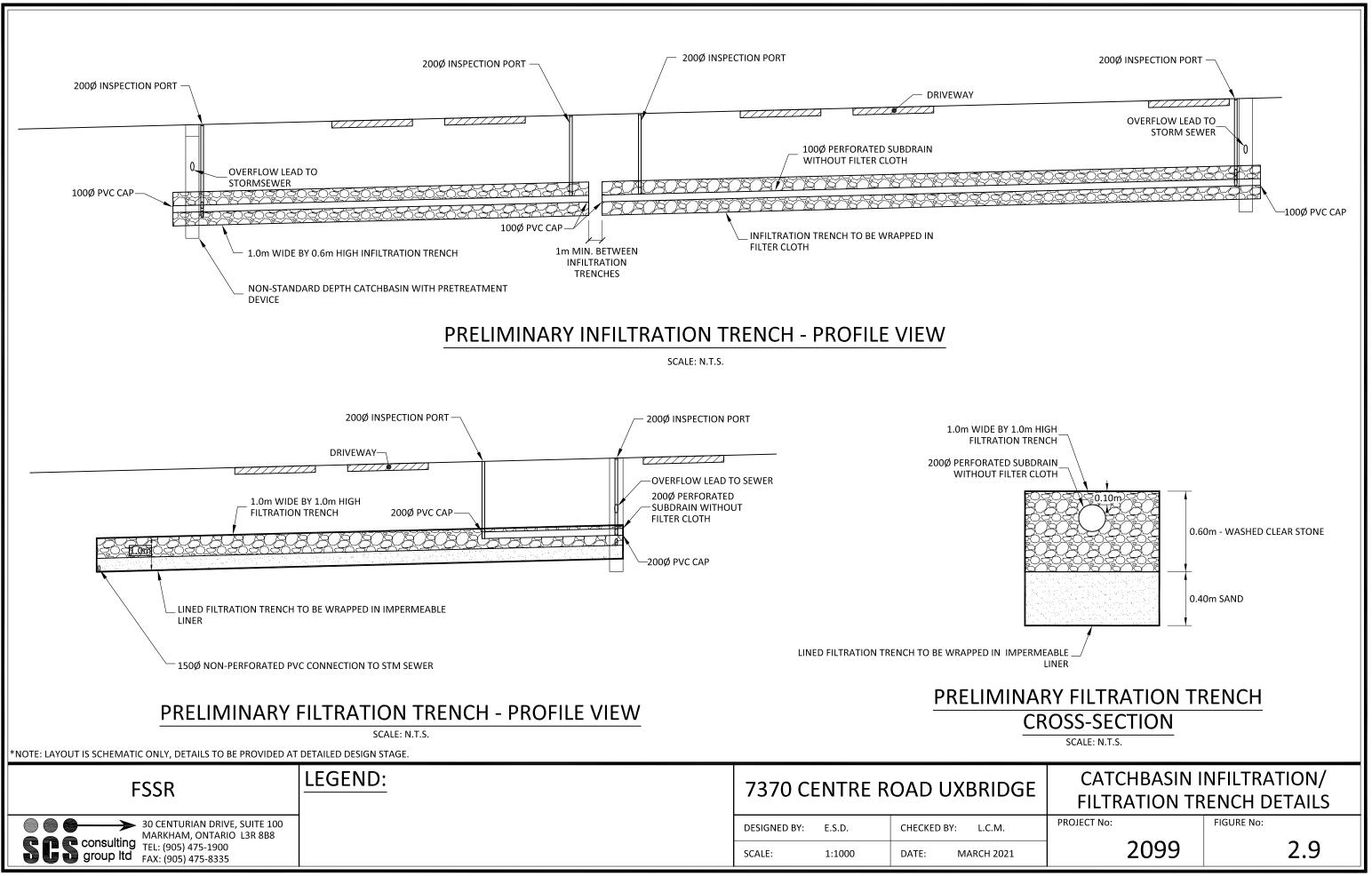


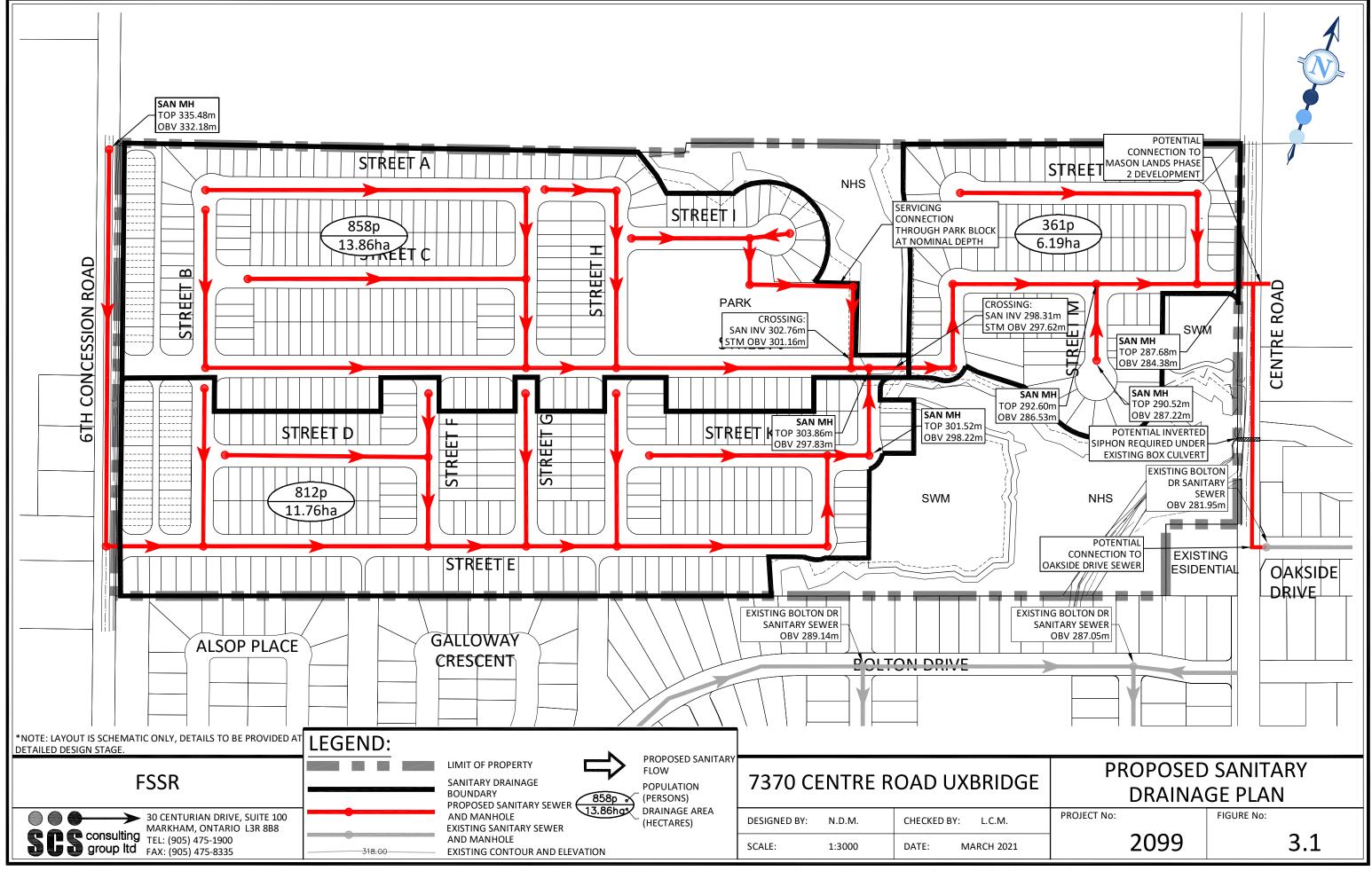


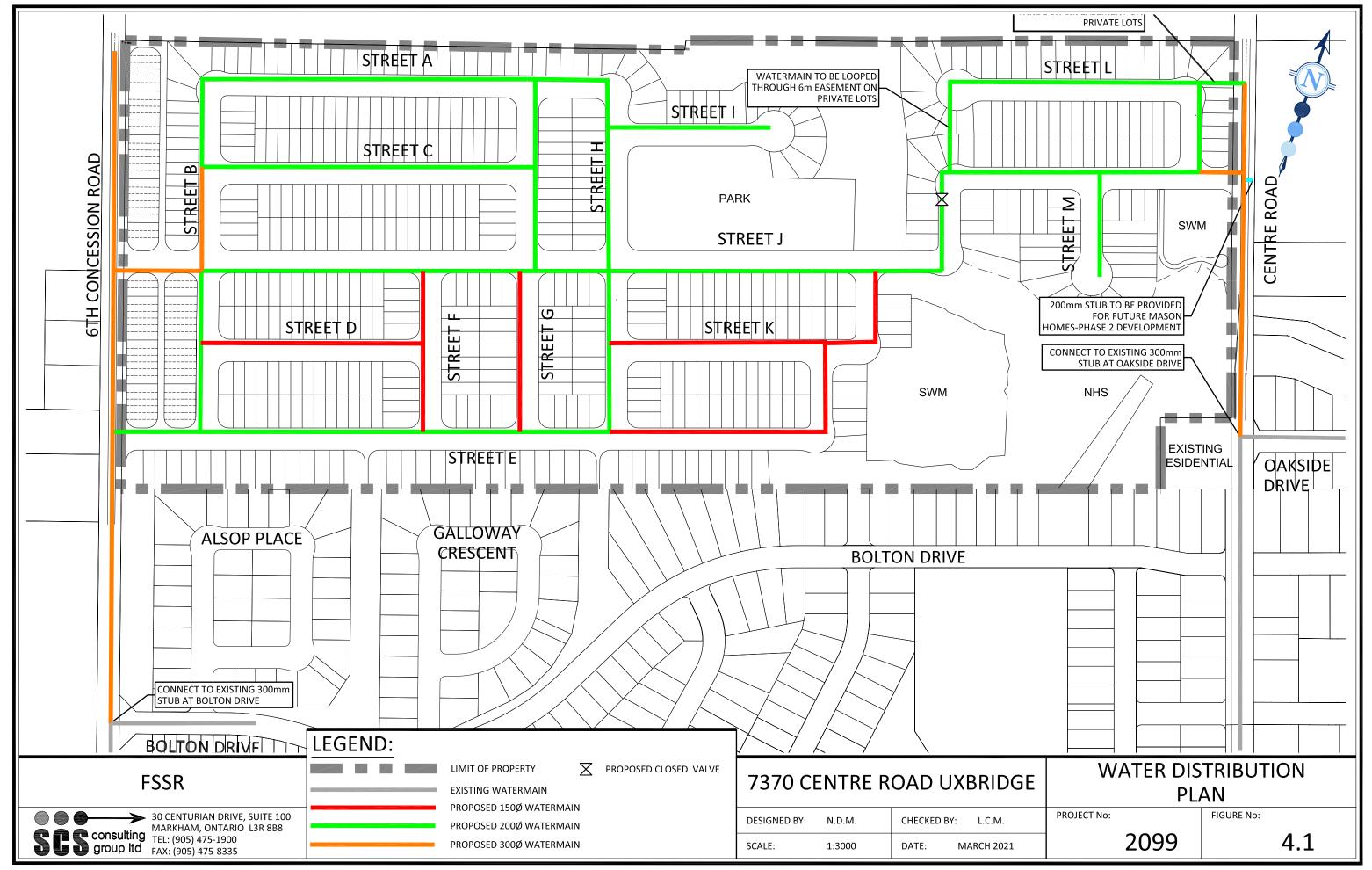


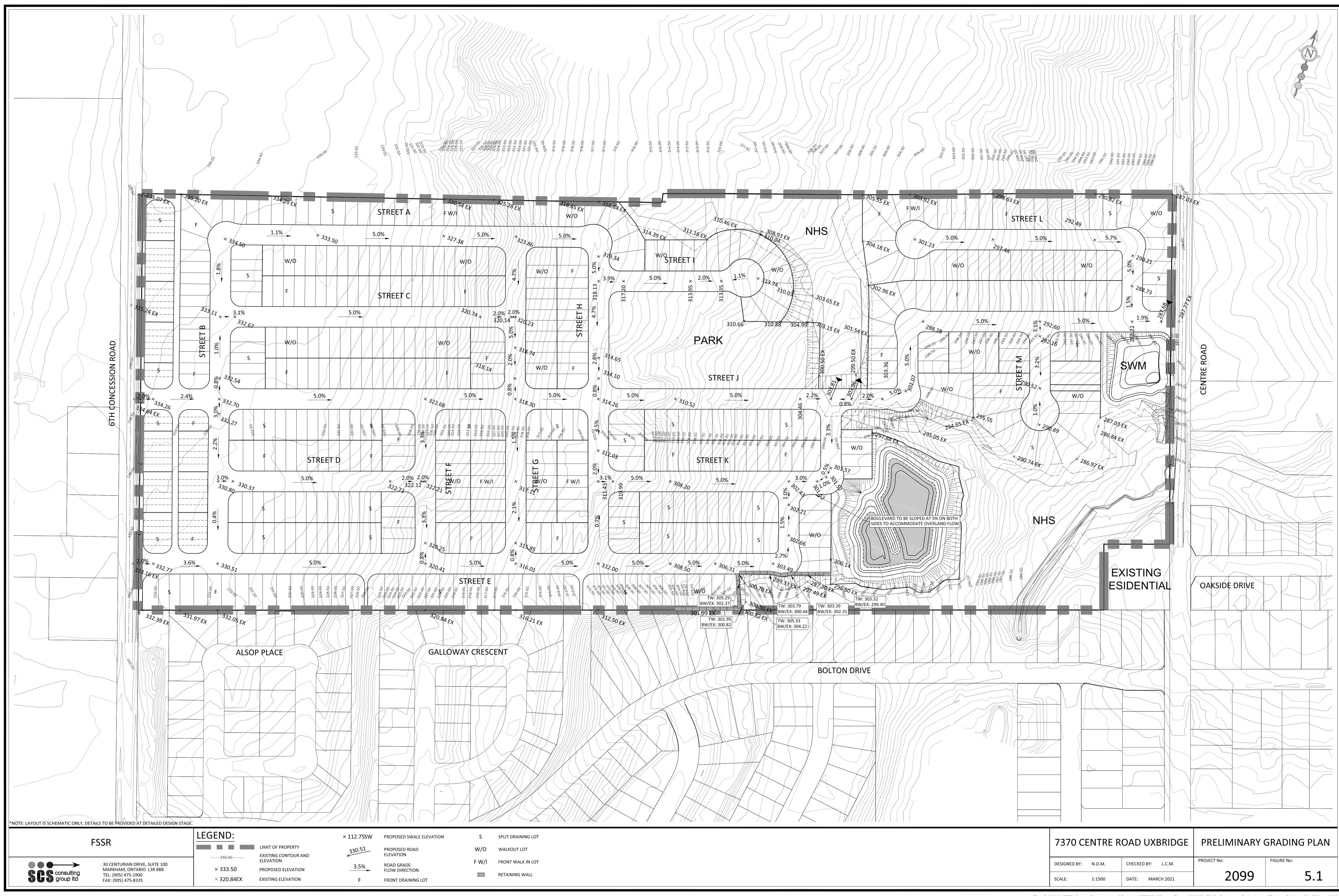


CROSS - SECTION A-A

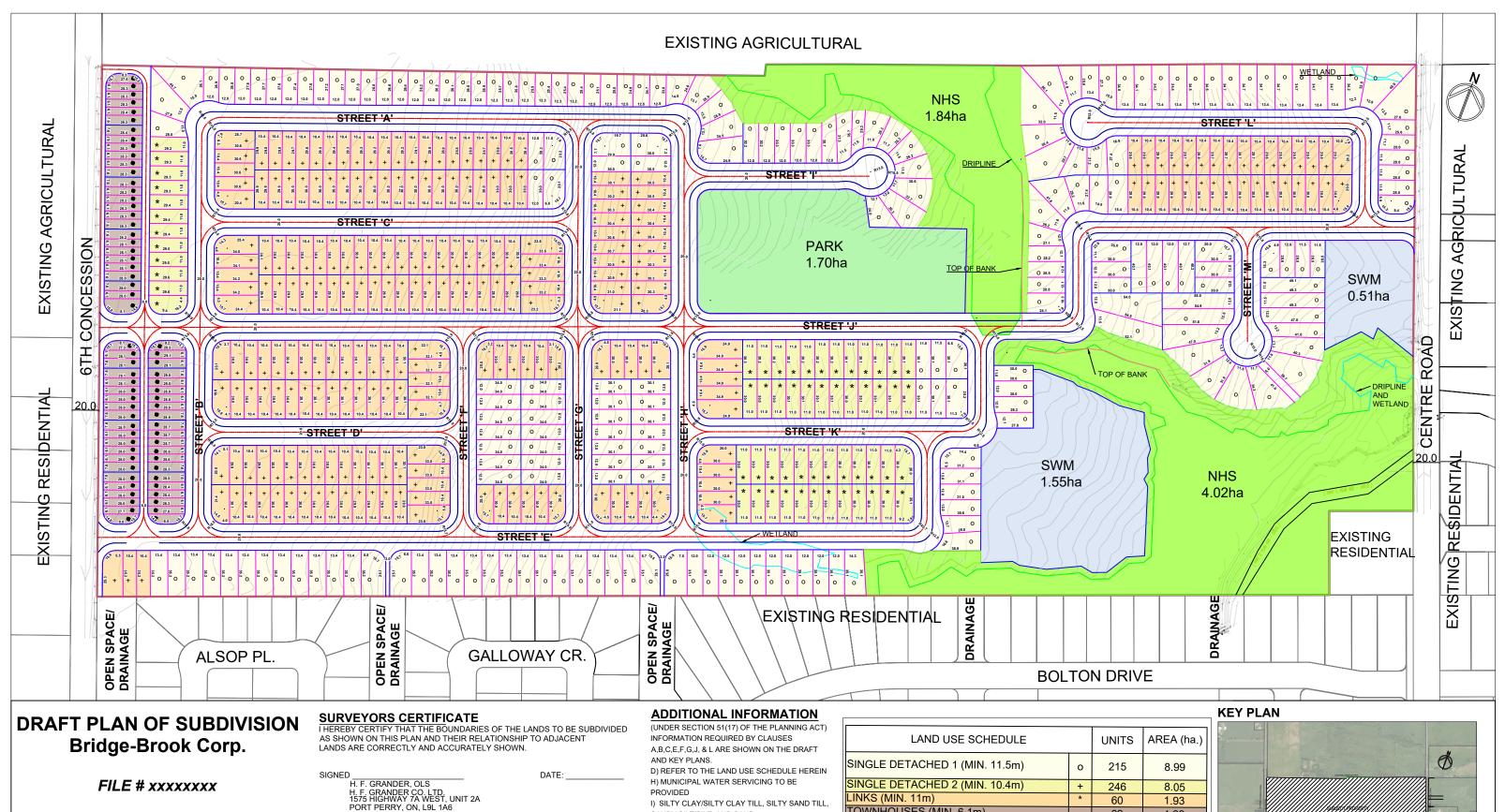

0.5m MIN.


W


SCALE: N.T.S.


MAXIMUM TRENCH DIMENSIONS:							
MINIMUM TYPICAL LOT FRONTAGE (m)	L (m)	W (m)	D (m)	MAXIMUM INFILTRATION VOLUME PROVIDED (m³)			
10.4	9.4	1.5	0.6	3.4			
11.5	10.5	1.5	0.6	3.8			
13.4	12.4	1.5	0.6	4.5			

SCS gra		CENTURIAN DRIV ARKHAM, ONTARI L: (905) 475-1900 X: (905) 475-8335	O L3R 8B8	7370 CENTRE R	OAD UXBRIDGE
	FS	SR		''-' ''' ''' ''	NFILTRATION DETAILS
DESIGNED BY: E.S.D. CHECKED BY: L.C.M.			L.C.M.	PROJECT No:	FIGURE No:
SCALE:	N.T.S.	DATE:	MARCH 2021	2099	2.8



APPENDIX A DRAFT PLAN OF SUBDIVISION

7370 CENTRE ROAD PARTS 1 & 2 OF LOT 33, CONCESSION 6 TOWNSHIP OF UXBRIDGE, REGIONAL MUNICIPALITY OF DURHAM

H. F. GRANDER CO. LTD. 1575 HIGHWAY 7A WEST, UNIT 2A PORT PERRY, ON, L9L 1A6

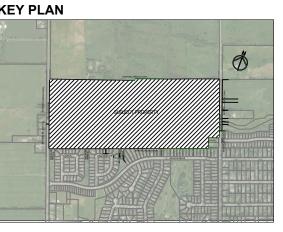
OWNER'S AUTHORIZATION

I AUTHORIZE MDTR GROUP TO PREPARE AND SUBMIT THIS PLAN FOR DRAFT

SIGNED DATE: _ JOHN SPINA, ASO BRIDGEBROOK CORP. 7681 HWY 27 UNIT 16, WOODBRIDGE, ONTARIO

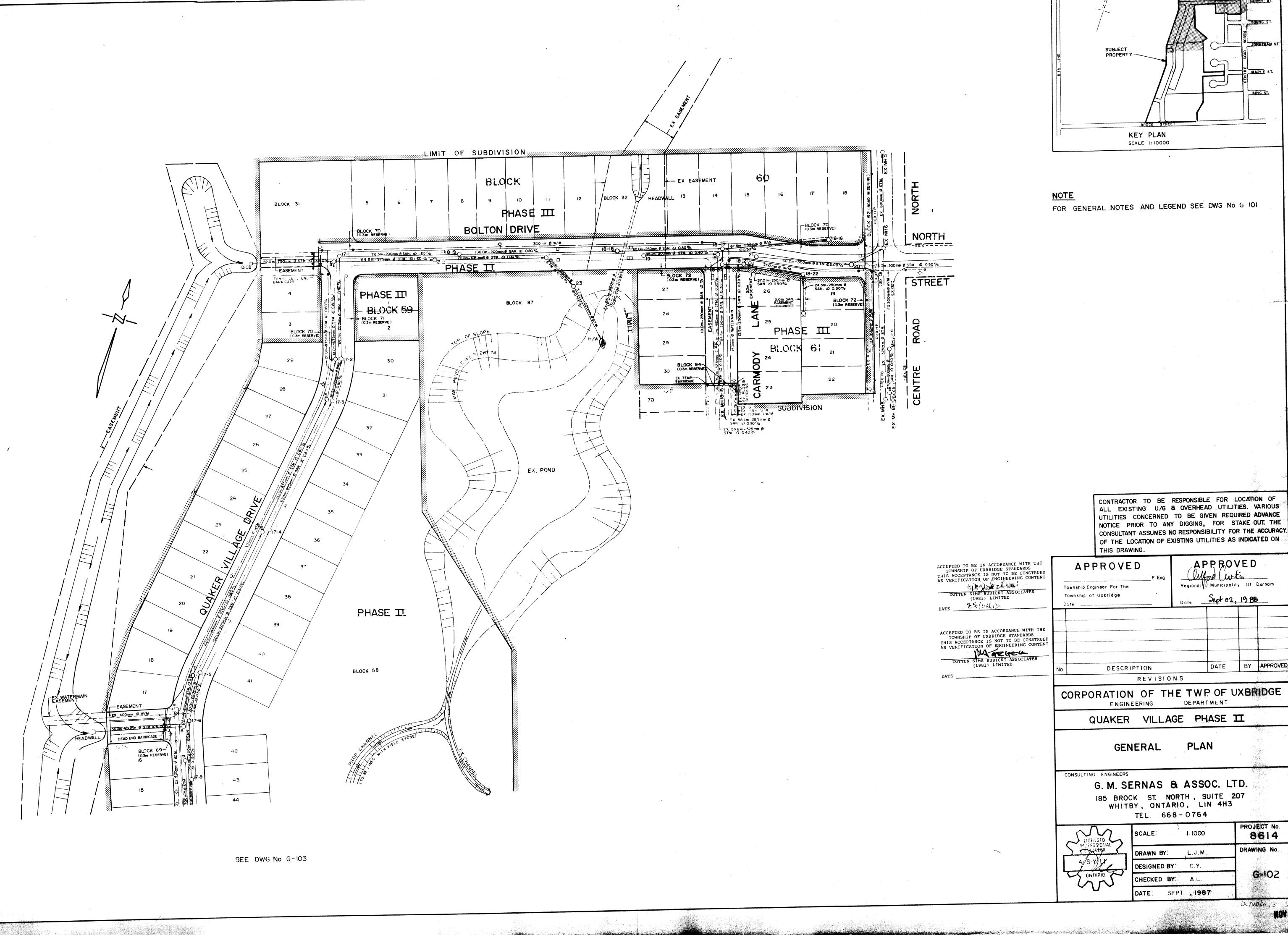
SANDY SILT/SILT, AND SAND

K) MUNICIPAL STORM SEWERS TO BE PROVIDED

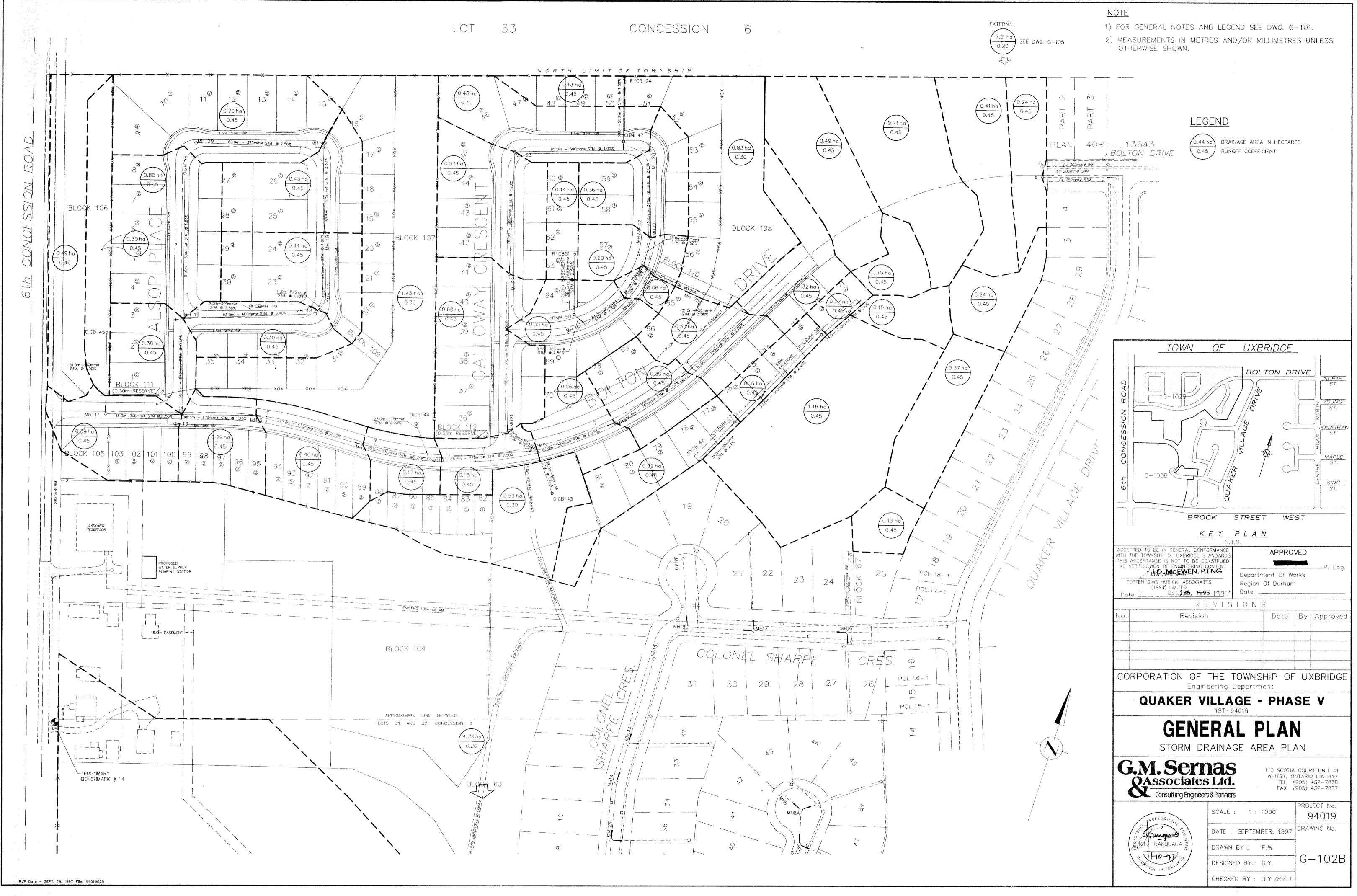

NOTES

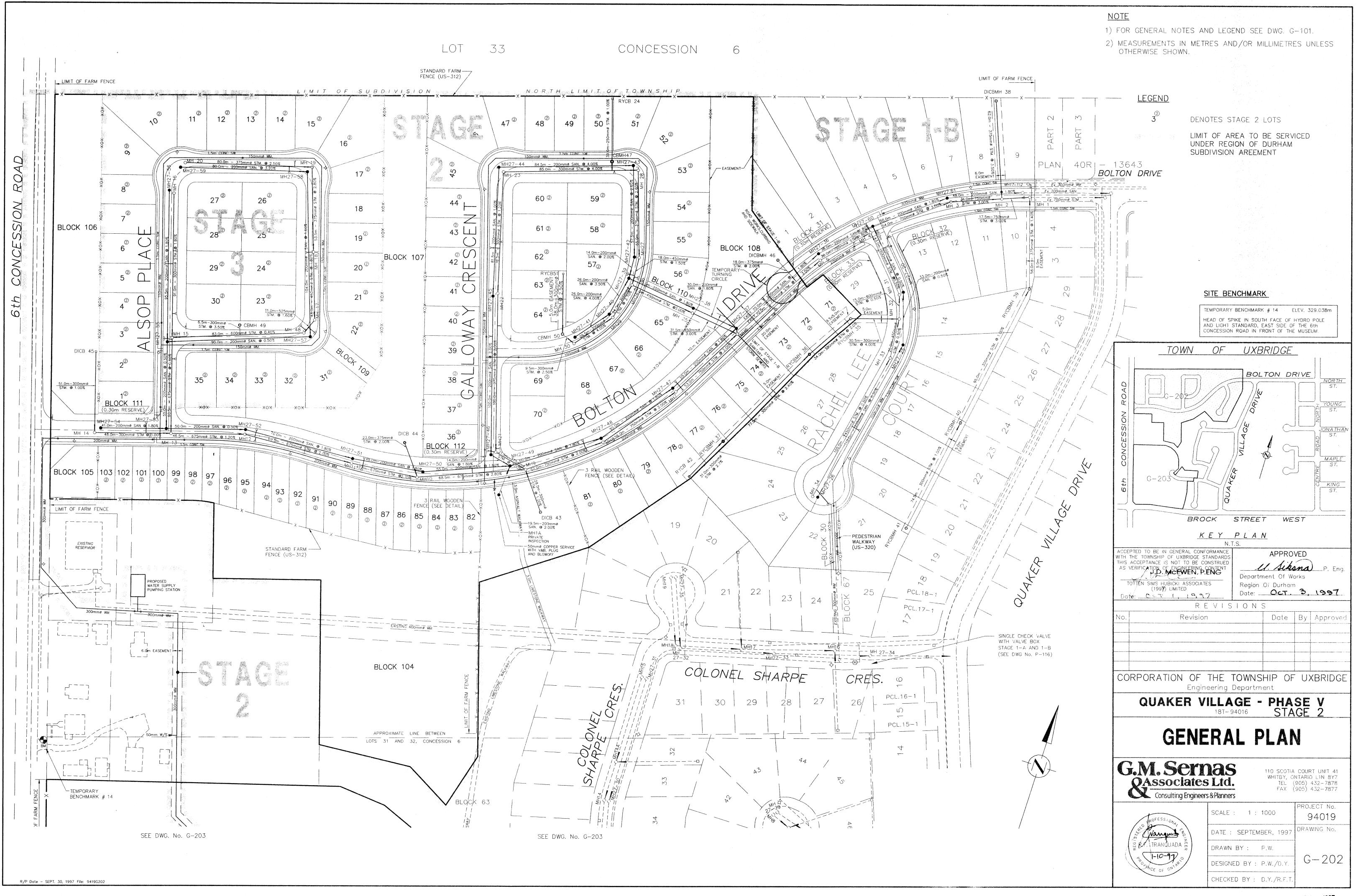
minimum tangent length at intersections as required by the Township of Uxbridge Design Critera and Standards (2016)

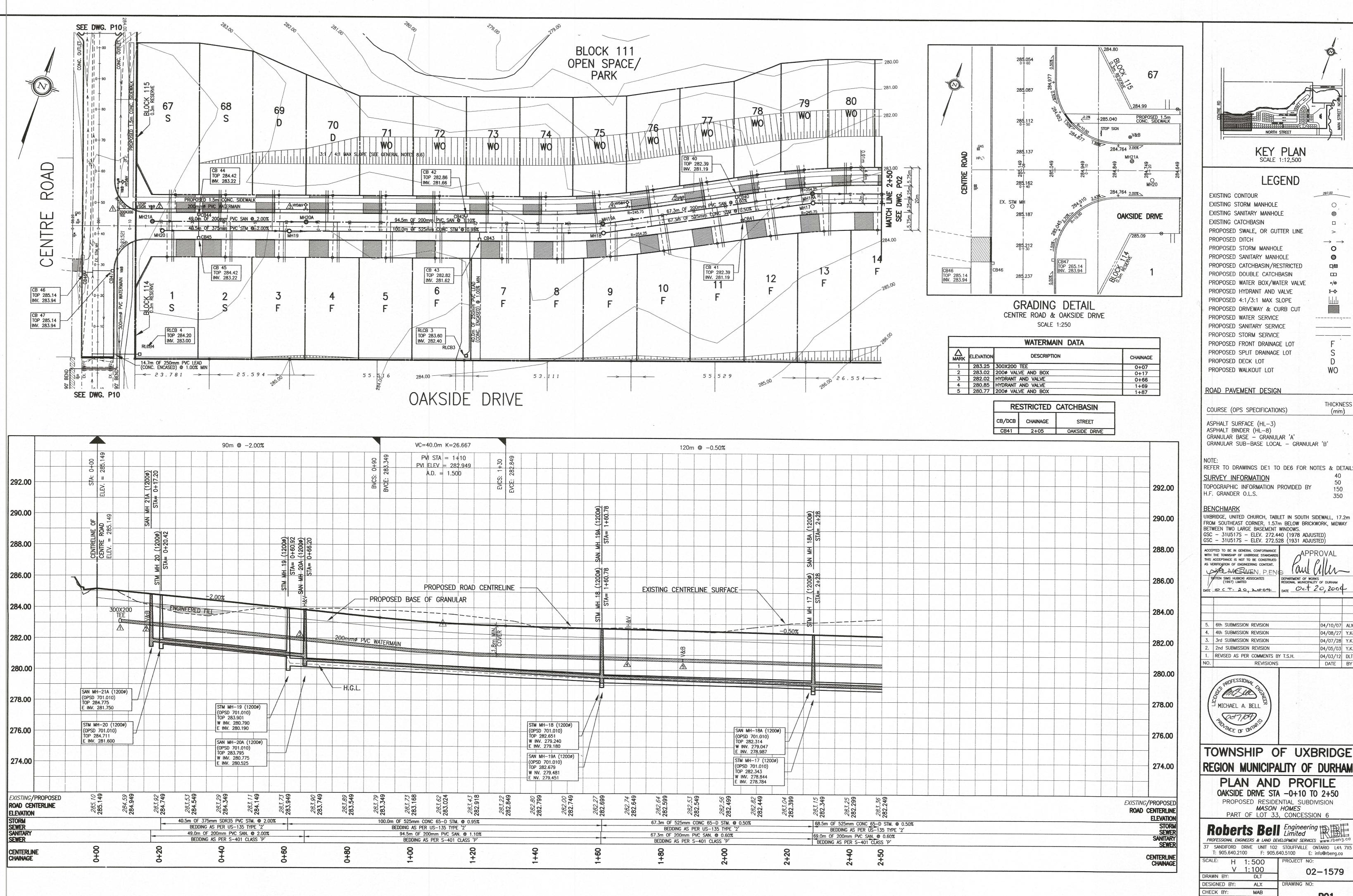
-Pavement illustration is diagrammatic only -Top of Slope and Wetlands as staked July 24, 2020 -Dripline staked June 24, 2020

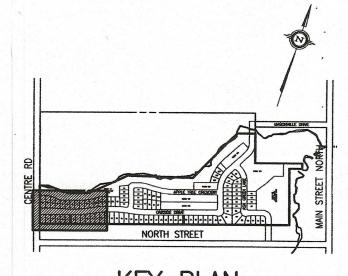

-All measurements made using metric system

LAND USE SCHEDULE		UNITS	AREA (ha.)
SINGLE DETACHED 1 (MIN. 11.5m)	0	215	8.99
SINGLE DETACHED 2 (MIN. 10.4m)	+	246	8.05
LINKS (MIN. 11m)	*	60	1.93
TOWNHOUSES (MIN. 6.1m)	•	69	1.29
PARK			1.70
NATURAL HERITAGE SYSTEM			5.86
STORM WATER MANAGEMENT FACILITY			2.06
20m ROADS AND WALKWAYS			10.0
TOTALS		590	39.9




APPENDIX B RELEVANT EXCERPTS





1.

297.00 0 I-ф

THICKNESS (mm)

UXBRIDGE, UNITED CHURCH, TABLET IN SOUTH SIDEWALL, 17.2m FROM SOUTHEAST CORNER, 1.57m BELOW BRICKWORK, MIDWAY

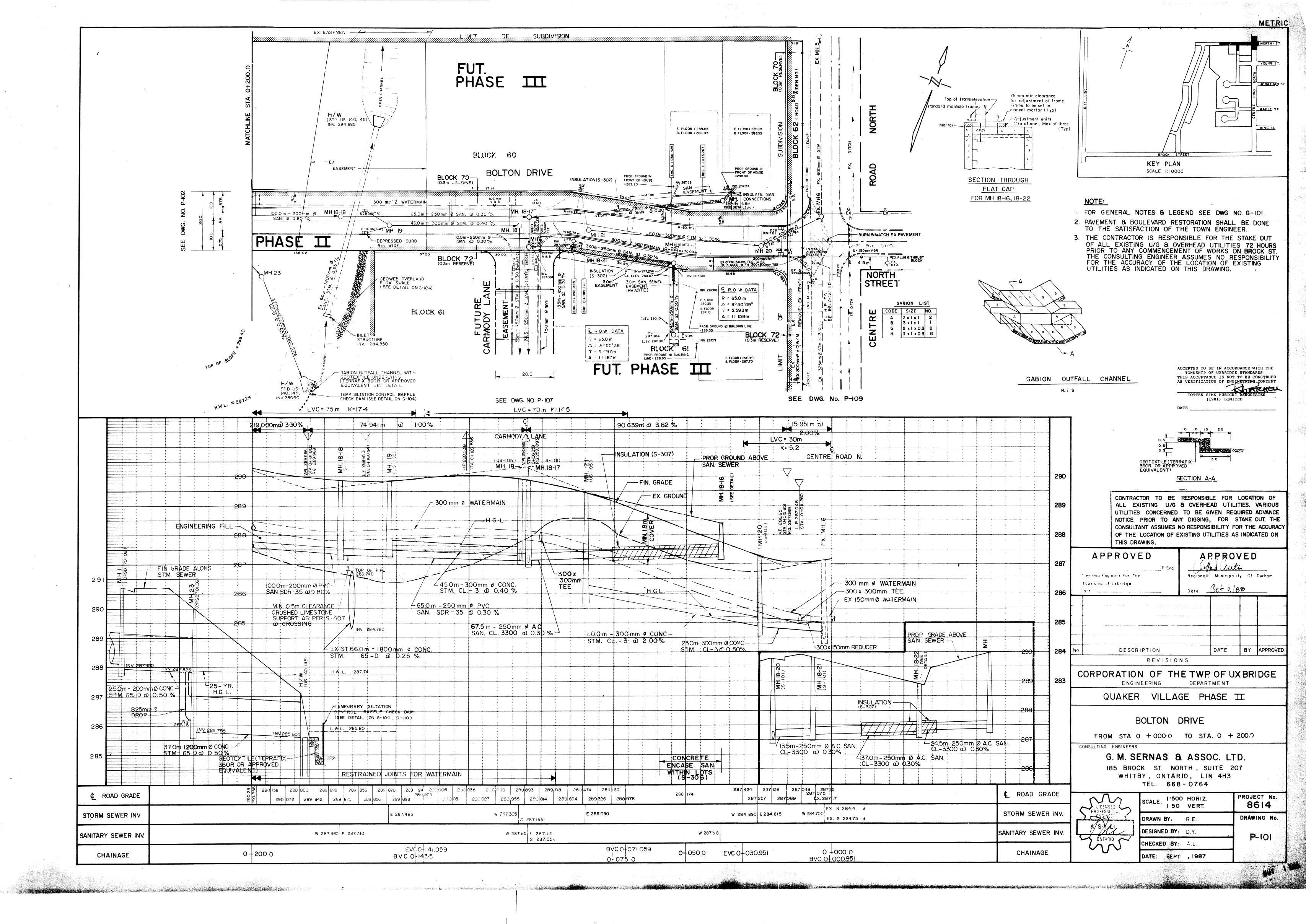
> Paul aller DEPARTMENT OF WORKS REGIONAL MUNICIPALITY OF DURHAM DATE Oct 20, 2004

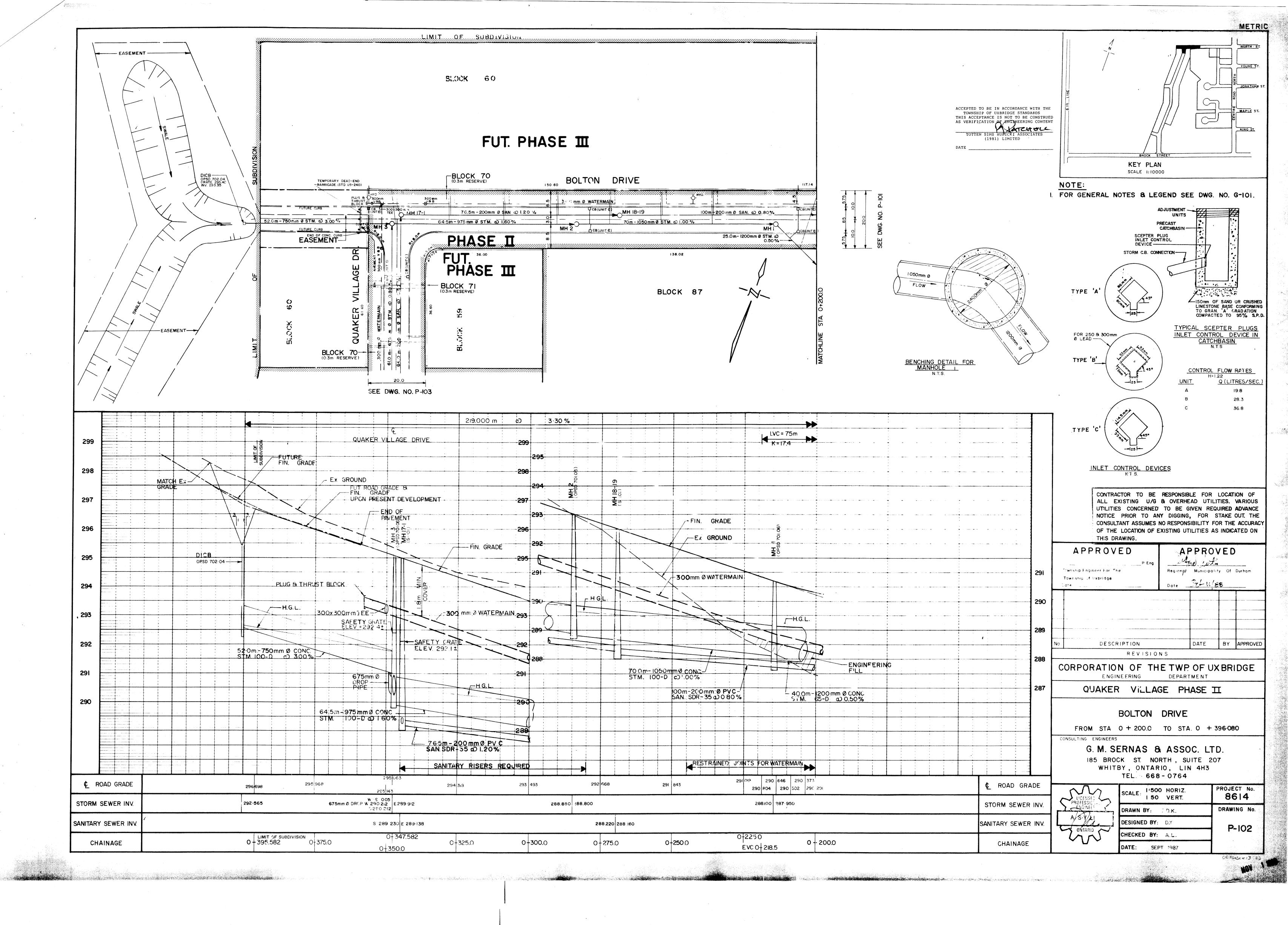
WO

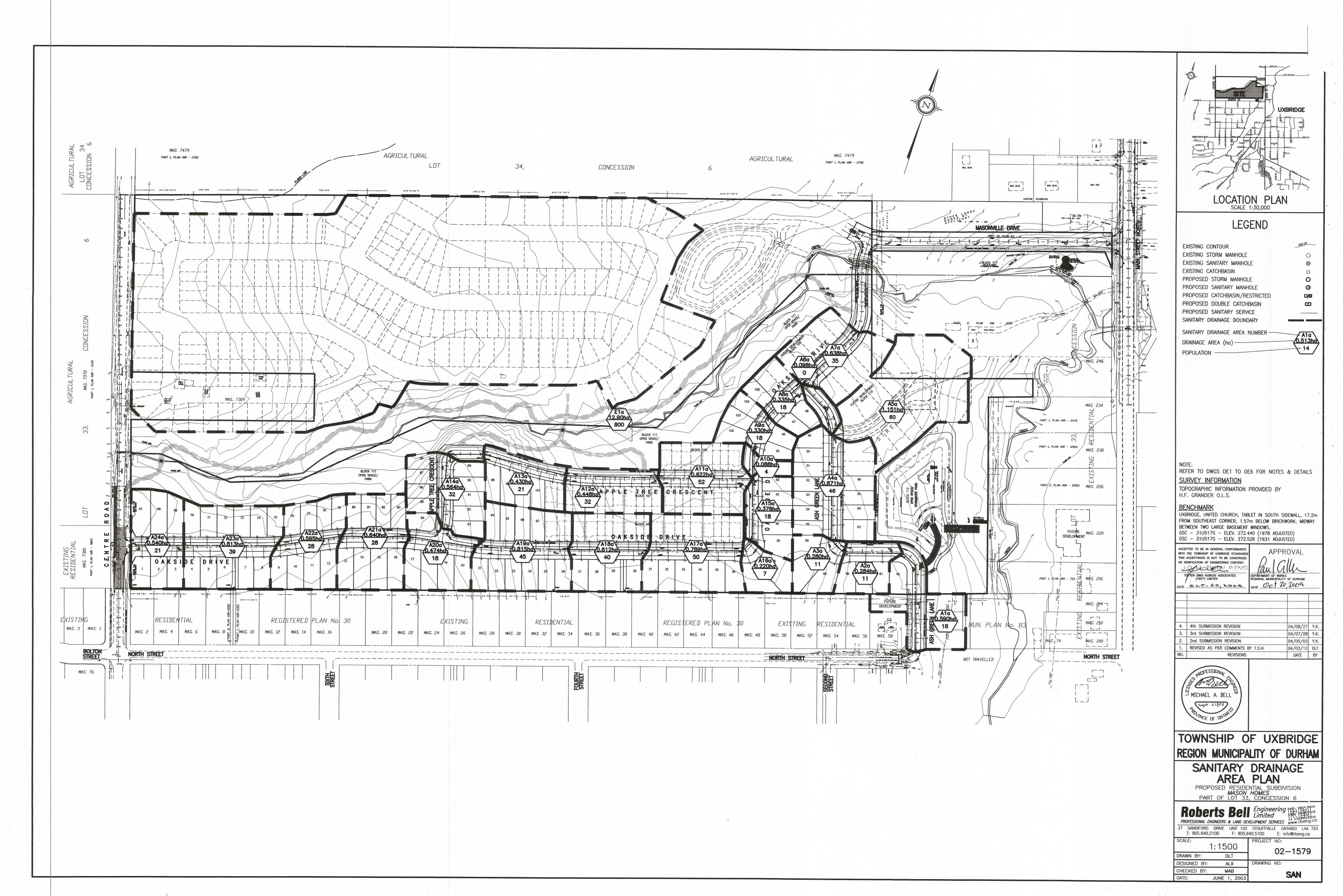
50 150

350

04/10/07 ALX 04/08/27 Y.k 04/07/28 Y.K 04/05/03 Y.H 04/03/12 DLT DATE B


TOWNSHIP OF UXBRIDGE REGION MUNICIPALITY OF DURHAM


PLAN AND PROFILE


OAKSIDE DRIVE STA -0+10 TO 2+50 PROPOSED RESIDENTIAL SUBDIVISION

Roberts Bell Engineering Limited PROFESSIONAL ENGINEERS & LAND DEVELOPMENT SERVICES WWW.rbeng.c SANDIFORD DRIVE UNIT 102 STOUFFVILLE ONTARIO L44 7X5 T: 905.640.2100 F: 905.640.5100 E: info@rbeng.ca

SCALE:	Н	1:500	PROJECT NO:
	V	1:100	02-1579
DRAWN BY		DLT	7 02 13/3
DESIGNED	BY:	ALX	DRAWING NO:
CHECK BY:		MAB	P01
DATE:	Jl	JNE 1, 2003	ן דטו

MEETING MINUTES

File #: 2099

Date: October 14, 2020

Project: 7370 Centre Road, Uxbridge

Purpose: Rainscaping Charrette

Date/Time of Meeting: August 25, 2020 – 10:00 am – 12:00 pm

Location: SCS Consulting Group – Virtual Boardroom #2

Next Meeting: TBD

Recipient(s): Email:

Attendees: Mr. John Spina, MDTR john@mdtrgroup.com

Ms. Tina Fang, MDTR tina@mdtrgroup.com
Ms. Lindsay Chen, MDTR lindsay@mdtrgroup.com

Mr. Steve Schaefer, SCS sschaefer@scsconsultinggroup.com
Mr. Nick McIntosh, SCS nmcintosh@scsconsultinggroup.com

Mr. Matthew Cory, MGP mcory@mgp.ca

Mr. Zen Keizars, Beacon zkeizars@beaconenviro.com

Ms. Julianna MacDonald, Beacon jmacdonald@beaconenviro.com
Mr. Peter Middaugh, AECOM (Township) peter.middaugh@aecom.com

Mr. Dave Ruggle (LSRCA)

Ms. Renata Sadowska (LSRCA)

d.ruggle@lsrca.on.ca
r.sadowska@lsrca.on.ca

Ms. Shelly Cuddy (LSRCA) s.cuddy@lsrca.on.ca

The following is considered to be a true and accurate record of the items discussed. Any errors or omissions in these minutes should be provided in writing to the author immediately.

<u>Item:</u>	Action:
Below is a summary of the items discussed at the RainScaping meeting and the various potential low impact development (LID) and stormwater management (SWM) measures that <u>may</u> be considered to be utilized in the proposed development. It is noted that the Draft	
Plan has not been finalized and the final LID and SWM solution(s) will be developed through the Draft Plan (Functional Servicing and Stormwater Management Report) and subsequent detailed design processes and may not be exactly as presented at the RainScaping meeting.	

File #: 2099 October 14, 2020 Page 2 of 7

Item:			Action:
1.0	Genera	1	
	1.1 N	atural Heritage	
	•→	Existing land use is predominantly agricultural	
	•	A headwater drainage feature is located in the central area of the site, conveying external drainage from the north to the existing wetland and tributary in the southeast corner of the site.	
	•	A tributary of the Uxbridge Brook conveys flows through the southeast wetland from a culvert under Bolton Drive to a Culvert under Centre Road.	
	•→	A second smaller existing wetland is located in the approximate centre of the southern edge of the site.	Info
	\longrightarrow	A third small existing wetland is located at the northeast corner of the site.	
	\longrightarrow	Natural Heritage investigations and site staking is ongoing.	
	•→	LSRCA Recommendations (See Attachment A for original LSRCA Comments):	
	0	Separate comments on previous meeting minutes have been provided to MDTR. They have been provided in Attachment A for reference.	
	1.2 G	eotechnical Investigation	
	•→	Preliminary Geotechnical Investigation prepared by Soil Engineers Ltd., February, 2018.	
	•→	14 boreholes advanced to depth of 6.3 to 15.7 m from November to December, 2017.	
	\longrightarrow	~0.6-1.5 m topsoil/Plowed soil.	
	•	Site is generally underlain by a complex stratigraphy of stiff to hard silty clay, hard silty clay till, and generally compact silty sand till, with layers of loose to very dense sand and compact to very dense silt deposits.	Info
	•	Silty Sand Till identified in several locations: east edge of site, the approximate location of the proposed western park block, and the southwest corner of the site.	
	1.3 H	ydrogeological Investigation	
	•→	Depths ranging from 0.15 to 4.65 m below ground	
	•→	Groundwater level generally follows existing topography, higher elevations on west side of site, lower elevations on east side of site	
	•	Groundwater level ranges from approximately 0.2 mbgs to 8.92mbgs, consistently deeper in BH13 (at approximately location of proposed park block)	Info
	\longrightarrow	LIDs expected to be within 1-2 m of the native silty clay soil	
	\longrightarrow	Groundwater level will fluctuate with the seasons	

tem:		Action:
•→	Site is located in WHPA-Q1 and Q2 and Significant groundwater recharge area.	
\longrightarrow	Site is not located in Wellhead Protection Area.	
•→	LSRCA Recommendations (See Attachment A for original LSRCA Comments):	
0	Site design should include maintaining drainage (overland flow) and infiltration supporting all features that will be preserved onsite (water course/headwaters and vegetated areas/buffers).	
0	It would be beneficial if the site concept plan could be updated to allow for infiltration facilities where groundwater/soil conditions are less constraining.	
1.4 D	raft Plan	
•→	Site is located within Uxbridge Urban Area (Special Study Area 6).	
•	Draft Plan to be composed of single detached and townhouse residences, two park blocks, municipal roads, and two stormwater management blocks.	Info
•→	Draft Plan is preliminary and may be subject to modifications through Draft Plan application process.	
1.5 St	tormwater Management and Grading	
•→	Proposed lot and road grades will range between 0.5% and 5.0%.	
\longrightarrow	Road grades from east to west are steep (5.0%) throughout site.	
•→	Drainage function of the headwater drainage feature to be retained, will require culvert underneath road or storm sewer connection.	
•→	3:1 sloping to match existing in open space blocks/buffers (may limit LID opportunities).	
\longrightarrow	SWM Criteria	
0	Quantity Control: Control proposed peak flows to existing peak flows for the 2 through 100 year storm events (MECP/Uxbridge).	
0	Quality Control: Enhanced Level (80% TSS Removal) (Uxbridge).	Info
0	Erosion Control: minimum 24 hour detention of the 40mm storm event (Uxbridge SWM Master Plan).	
0	Water Budget: maintain proposed to existing to the extent feasible (LSRCA).	
0	Phosphorus: "Zero" export target (LSRCA) with offsetting for any remaining balance, minimum 90% removal (Uxbridge SWM Master Plan).	
0	Volume Control: On-site retention of the 25mm rainfall runoff from all impervious surfaces (LSRCA).	

	Item:		Action:
Comments): SWM opportunities should be confirmed upon approval of the NH features and associated requirements. There may be some benefit in locating the park block adjacent to the SWM block at the south end of the plan. Infiltration opportunities should be maximized within the central area of the site and may require consideration of the designated SWM block or corridor. LIDs along the buffer areas, outside of the private properties and with provision of a maintenance access, may further support the SWM plan. Item: Action: Action: Right-of-Way (ROW) LID and SWM Measures The following potential LID and SWM Options were considered for the proposed right-of-ways (refer to Attached Figure 1): Raingardens/Bioswales are a surface based infiltration/filtration measure that can be provided in open space blocks, side flankages, single loaded roads, and backing onto rear lot lines. Catchbasins can be equipped with deeper sumps and potentially catchbasin inserts (i.e. CB Shield* - http://www.cbshield.com/ Litta Trap-http://www.imbriumsystems.com/stormwater-treatment-solutions/littatrap) that will minimize turbulence in the CB and allow sediment and pollutants to settle out and stay captured in the deeper sump until the CB's are cleaned out. CB's can have a piped connection to a stone-filled infiltration/filtration trench in the boulevard with a perforated pipe running along the trench to distribute flows. 2.1 Township Comments (See Attachment B for Township Comments provided prior to the meeting) Raingarden/Bioswale: Work Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints New York Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints They should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations.	•→	: =	SCS
features and associated requirements. There may be some benefit in locating the park block adjacent to the SWM block at the south end of the plan. Infiltration opportunities should be maximized within the central area of the site and may require consideration of the designated SWM block or corridor. LIDs along the buffer areas, outside of the private properties and with provision of a maintenance access, may further support the SWM plan. Item: 2.0 Right-of-Way (ROW) LID and SWM Measures The following potential LID and SWM options were considered for the proposed right-of-ways (refer to Attached Figure 1): Raingardens/Bioswales are a surface based infiltration/filtration measure that can be provided in open space blocks, side flankages, single loaded roads, and backing onto rear lot lines. Catchbasins can be equipped with deeper sumps and potentially catchbasin inserts (i.e. CB Shield® - http://www.cbshield.com/ Litta Trap-http://www.imbriumsystems.com/stormwater-treatment-solutions/littatrap) that will minimize turbulence in the CB and allow sediment and pollutants to settle out and stay captured in the deeper sump until the CB's are cleaned out. CB's can have a piped connection to a stone-filled infiltration/filtration trench in the boulevard with a perforated pipe running along the trench to distribute flows. 2.1 Township Comments (See Attachment B for Township Comments provided prior to the meeting) Raingarden/Bioswale: Work Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints The Should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations.	•→	`	
SWM block at the south end of the plan. Info Infiltration opportunities should be maximized within the central area of the site and may require consideration of the designated SWM block or corridor. LIDs along the buffer areas, outside of the private properties and with provision of a maintenance access, may further support the SWM plan. Item: 2.0 Right-of-Way (ROW) LID and SWM Measures The following potential LID and SWM options were considered for the proposed right-of-ways (refer to Attached Figure 1): Raingardens/Bioswales are a surface based infiltration/filtration measure that can be provided in open space blocks, side flankages, single loaded roads, and backing onto rear lot lines. Catchbasins can be equipped with deeper sumps and potentially catchbasin inserts (i.e. CB Shield® - http://www.eshhield.com/ Litta Traphttp://www.imbriumsystems.com/stormwater-treatment-solutions/littatraphttp://www.imbriumsystems.com/stormwater-treatment-solutions/littatraphttp://www.imbriumsystems.com/stormwater-treatment-solutions/littatraphttp://www.cbhield.com/ Litta Traphttp://www.imbriumsystems.com/stormwater-treatment-solutions/littatraphttp://www.imbriumsystems.com/stormwater-treatment-solutions/littatraphttp://www.cbhield.com/ Litta Traphttp://www.imbriumsystems.com/stormwater-treatment-solutions/littatraphttp://www.cbhield.com/ Litta Traphttp://www.cbhield.com/ Litta Traphtt	0		
the site and may require consideration of the designated SWM block or corridor. LIDs along the buffer areas, outside of the private properties and with provision of a maintenance access, may further support the SWM plan. Item: 2.0 Right-of-Way (ROW) LID and SWM Measures The following potential LID and SWM options were considered for the proposed right-of-ways (refer to Attached Figure 1): Raingardens/Bioswales are a surface based infiltration/filtration measure that can be provided in open space blocks, side flankages, single loaded roads, and backing onto rear lot lines. Catchbasins can be equipped with deeper sumps and potentially catchbasin inserts (i.e. CB Shield® - http://www.cbshield.com/ Litta Traphttp://www.imbriumsystems.com/stormwater-treatment-solutions/littatrap) that will minimize turbulence in the CB and allow sediment and pollutants to settle out and stay captured in the deeper sump until the CB's are cleaned out. CB's can have a piped connection to a stone-filled infiltration/filtration trench in the boulevard with a perforated pipe running along the trench to distribute flows. 2.1 Township Comments (See Attachment B for Township Comments provided prior to the meeting) Raingarden/Bioswale: Work Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints They should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations.	0		Info
Item: 2.0 Right-of-Way (ROW) LID and SWM Measures The following potential LID and SWM options were considered for the proposed right-of-ways (refer to Attached Figure 1): Raingardens/Bioswales are a surface based infiltration/filtration measure that can be provided in open space blocks, side flankages, single loaded roads, and backing onto rear lot lines. Catchbasins can be equipped with deeper sumps and potentially catchbasin inserts (i.e. CB Shield⁻ - http://www.imbriumsystems.com/stormwater-treatment-solutions/littatrap) that will minimize turbulence in the CB and allow sediment and pollutants to settle out and stay captured in the deeper sump until the CB's are cleaned out. CB's can have a piped connection to a stone-filled infiltration/filtration trench in the boulevard with a perforated pipe running along the trench to distribute flows. 2.1 Township Comments (See Attachment B for Township Comments provided prior to the meeting) Raingarden/Bioswale: Work Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints They should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations.	0	the site and may require consideration of the designated SWM block or	
2.0 Right-of-Way (ROW) LID and SWM Measures The following potential LID and SWM options were considered for the proposed right-of-ways (refer to Attached Figure 1): ■ Raingardens/Bioswales are a surface based infiltration/filtration measure that can be provided in open space blocks, side flankages, single loaded roads, and backing onto rear lot lines. ■ Catchbasins can be equipped with deeper sumps and potentially catchbasin inserts (i.e. CB Shield® - http://www.cbshield.com/ Litta Trap- http://www.cbshield.com/ Litta Trap- http://www.mbriumsystems.com/stormwater-treatment-solutions/littatrap) that will minimize turbulence in the CB and allow sediment and pollutants to settle out and stay captured in the deeper sump until the CB's are cleaned out. ■ CB's can have a piped connection to a stone-filled infiltration/filtration trench in the boulevard with a perforated pipe running along the trench to distribute flows. 2.1 Township Comments (See Attachment B for Township Comments provided prior to the meeting) ■ Raingarden/Bioswale: ■ Work Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints ■ They should not be implemented in well head protection areas ■ A maximum road grade guideline would need to be developed to manage the application to preferred locations.	0		
The following potential LID and SWM options were considered for the proposed right-of- ways (refer to Attached Figure 1): Raingardens/Bioswales are a surface based infiltration/filtration measure that can be provided in open space blocks, side flankages, single loaded roads, and backing onto rear lot lines. Catchbasins can be equipped with deeper sumps and potentially catchbasin inserts (i.e. CB Shield® - http://www.cbshield.com/ Litta Trap- http://www.imbriumsystems.com/stormwater-treatment-solutions/littatrap) that will minimize turbulence in the CB and allow sediment and pollutants to settle out and stay captured in the deeper sump until the CB's are cleaned out. CB's can have a piped connection to a stone-filled infiltration/filtration trench in the boulevard with a perforated pipe running along the trench to distribute flows. 2.1 Township Comments (See Attachment B for Township Comments provided prior to the meeting) Raingarden/Bioswale: Work Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints Theo They should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations.	<u>Item:</u>		Action:
ways (refer to Attached Figure 1): Raingardens/Bioswales are a surface based infiltration/filtration measure that can be provided in open space blocks, side flankages, single loaded roads, and backing onto rear lot lines. Catchbasins can be equipped with deeper sumps and potentially catchbasin inserts (i.e. CB Shield [©] - http://www.cbshield.com/ Litta Trap-http://www.imbriumsystems.com/stormwater-treatment-solutions/littatrap) that will minimize turbulence in the CB and allow sediment and pollutants to settle out and stay captured in the deeper sump until the CB's are cleaned out. CB's can have a piped connection to a stone-filled infiltration/filtration trench in the boulevard with a perforated pipe running along the trench to distribute flows. 2.1 Township Comments (See Attachment B for Township Comments provided prior to the meeting) Raingarden/Bioswale: Work Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints New They should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations.	2.0 Right-o	f-Way (ROW) LID and SWM Measures	
that can be provided in open space blocks, side flankages, single loaded roads, and backing onto rear lot lines. Catchbasins can be equipped with deeper sumps and potentially catchbasin inserts (i.e. CB Shield® - http://www.cbshield.com/ Litta Trap- http://www.imbriumsystems.com/stormwater-treatment-solutions/littatrap) that will minimize turbulence in the CB and allow sediment and pollutants to settle out and stay captured in the deeper sump until the CB's are cleaned out. CB's can have a piped connection to a stone-filled infiltration/filtration trench in the boulevard with a perforated pipe running along the trench to distribute flows. 2.1 Township Comments (See Attachment B for Township Comments provided prior to the meeting) Raingarden/Bioswale: Work Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints They should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations.			
catchbasin inserts (i.e. CB Shield® - http://www.cbshield.com/ Litta Trap- http://www.imbriumsystems.com/stormwater-treatment-solutions/littatrap) that will minimize turbulence in the CB and allow sediment and pollutants to settle out and stay captured in the deeper sump until the CB's are cleaned out. CB's can have a piped connection to a stone-filled infiltration/filtration trench in the boulevard with a perforated pipe running along the trench to distribute flows. 2.1 Township Comments (See Attachment B for Township Comments provided prior to the meeting) Raingarden/Bioswale: Work Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints They should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations.	•→	that can be provided in open space blocks, side flankages, single loaded	
trench in the boulevard with a perforated pipe running along the trench to distribute flows. 2.1 Township Comments (See Attachment B for Township Comments provided prior to the meeting) Raingarden/Bioswale: Work Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints They should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations.	•→	catchbasin inserts (i.e. CB Shield® - http://www.cbshield.com/ Litta Trap - http://www.imbriumsystems.com/stormwater-treatment-solutions/littatrap) that will minimize turbulence in the CB and allow sediment and pollutants to settle out and stay captured in the deeper sump until the CB's	Info
prior to the meeting) Raingarden/Bioswale: Work Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints They should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations.	•	trench in the boulevard with a perforated pipe running along the trench to	
 Work Department uses sand and salt and have concerns regarding sand filling up and plugging system quickly leading to potential for nuisance complaints They should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations. 		1	
filling up and plugging system quickly leading to potential for nuisance complaints They should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations.	•→	Raingarden/Bioswale:	
 A maximum road grade guideline would need to be developed to manage the application to preferred locations. 	0	filling up and plugging system quickly leading to potential for nuisance	Info
the application to preferred locations.	0	They should not be implemented in well head protection areas	
o Provide example for a single CB Application scs	0		
	0	Provide example for a single CB Application	SCS

Iten	<u>1:</u>		Action:
	0	Catchbasin Pretreatment Insert: Not desirable as individual measure to be implemented in new draft plan of subdivision. Note: Township requires all new end-of-pipe SWM quantity/quality control measures to include a Stormceptre (OGS) device for pre-	Info
	0	Consideration may be given on a site specific basis. Can potentially implement on temporary basis to intercept litter and debris from temporary land use/construction activities.	
	0	Catchbasin Infiltration/Filtration Trench Do not implement infiltration measures in Well Head Protection Areas. Works Department would like to have trench moved to outside edge of road allowance.	Info
3.0	The follo	Lot LID Measures owing potential LID and SWM options were considered for the proposed ivate lots (refer to Attached Figure 1):	
	•→	Rear yard infiltration trenches may be utilized in internal split draining and walkout lots pending confirmation of foundation setbacks for Phosphorous and water balance controls (no credit for water quality or quantity control).	Info
		ownship Comments (See Attachment B for Township Comments provided ior to the meeting)	
	0 0	Rear Yard Infiltration Trenches: Would only be considered on split drainage lots Township will not take easements and assume are a private measure should not be implemented in well head protection areas A maximum road grade guideline would need to be developed to manage the application to preferred locations.	Info
	3.2 LS	SRCA Comments (See Attachment A for original LSRCA Comments)	
	0	Rear Yard Infiltration Trenches: Cannot be approved for quality or quantity control without municipal easement, can be approved for water balance, phosphorus, and volume control. Comment was provided verbally during meeting and is not noted in Attachment A.	Info

<u>Iten</u>	<u>1:</u>		Action:			
4.0	SWM B	Block LID and SWM Measures				
	The following potential LID and SWM options were considered for the SWM Blocks (refer to Attached Figure 1):					
	•→	Dry and Wet Ponds presented as standard SWM solutions.				
	•→	Underground Infiltration/Active Storage Facilities, can use concrete (StormTrap) or plastic chamber systems (Cultec), Pre-treatment provided upstream of the facility if used for infiltration (OGS, Isolator Inlet Row).	Info			
	•→	Downstream Filtration Facility, can use manhole insert system (Jellyfish) or chamber system (StormFilter).				
		ownship Comments (See Attachment B for Township Comments provided ior to the meeting)				
	•	Underground Infiltration/Active Storage Facilities:				
	0	Infiltration not to be implemented in the well head protection areas				
	0	Consideration would be given adjacent to parkland dedications, not in parkland dedications	Info			
	0	Site specific geotechnical investigations required to address feasibility				
	0	SCS to prepare Cost/Benefit analysis for Township	SCS			
	•→	Downstream Filtration Facility:				
	0	Not desirable as individual measure to be implemented in new draft plan of subdivision.				
	0	Note: Township requires all new end-of-pipe SWM quantity/quality control measures to include a Stormceptre (OGS) device for pretreatment.	Info			
	0	Consideration may be given on a site specific basis such as smaller infill type developments, as evaluated on a case by case basis.				
5.0	Park Bl	ock LID and SWM Measures				
		owing potential LID and SWM options were considered for the proposed ark Blocks (refer to Attached Figure 1):				
	•→	Raingardens/Bioswales are a surface based infiltration/filtration measure that can be provided backing onto rear lot lines.				
	•	Underground Infiltration/Active Storage Facilities, can be provided underneath park blocks to provide dual functionality of land allowing for additional lots and DC/property tax revenue, can use concrete (StormTrap) or plastic chamber systems (Cultec), Pre-treatment provided upstream of the facility if used for infiltration (OGS, Isolator Inlet Row).	Info			

Project: | 7370 Centre Road, Uxbridge Purpose: | Rainscaping Charrette File #: 2099 October 14, 2020 Page 7 of 7

<u>Item</u>	1 <u>:</u>		Action:			
	5.1 Township Comments (See Attachment B for Township Comments provided prior to the meeting)					
	•→					
	0					
	\longrightarrow	Underground Infiltration/Active Storage Facilities:				
	0	See recommendation in Section 4.1 .				
6.0	Next Steps					
	•→	Township and LSRCA to provide feedback based on the items above.	Town/LSRCA			
	•→	The Functional Servicing design of the LIDs will be initiated and submitted as part of a Draft Plan Application	SCS			

SCS Consulting Group Ltd.

Nich Med That.

Nicholas McIntosh, M.A.Sc., P. Eng. nmcintosh@scsconsultinggroup.com

Attachments: Figure 1 – Rainscaping Summary Figure

Attachment A – LSRCA Rainscaping Recommendations

Attachment B – Township Preliminary LID Review Comments

Attachment C – August 25, 2020 Presentation Slides

P:\2099 7370 Centre Road Uxbridge\Correspondence\Minutes of Meetings\2020 10(Oct) 14 - Rainscaping Meeting Minutes\2020 10(Oct) 14 - 7370 Centre Road Uxbridge Rainscaping Meeting Minutes-NDM.docx

Soil Engineers Ltd.

CONSULTING ENGINEERS

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 - TEL (416) 754-8515 · FAX (905) 881-8335

 BARRIE
 MISSISSAUGA
 OSHAWA
 NEWMARKET
 GRAVENHURST
 PETERBOROUGH
 HAMILTON

 TEL: (705) 721-7863
 TEL: (905) 542-7605
 TEL: (905) 440-2040
 TEL: (905) 853-0647
 TEL: (705) 684-4242
 TEL: (905) 440-2040
 TEL: (905) 777-7956

 FAX: (705) 721-7864
 FAX: (905) 542-2769
 FAX: (905) 725-1315
 FAX: (905) 881-835
 FAX: (705) 684-8522
 FAX: (905) 725-1315
 FAX: (905) 542-2769

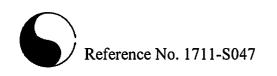
A REPORT TO BRIDGE BROOK CORP.

A GEOTECHNICAL INVESTIGATION FOR PROPOSED RESIDENTIAL DEVELOPMENT

7370 CENTRE ROAD

TOWN OF UXBRIDGE

REFERENCE NO. 1711-S047


FEBRUARY 2018

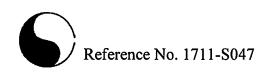
DISTRIBUTION

3 Copies - Bridge Brook Corp.

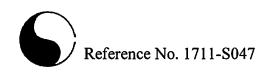
1 Copy - Soil Engineers Ltd. (Newmarket)

1 Copy - Soil Engineers Ltd. (Richmond Hill)

6.0 DISCUSSION AND RECOMMENDATIONS


The investigation revealed that beneath a veneer of topsoil and ploughed soils, the site is generally underlain by a complex stratigraphy consisting of stiff to hard, generally very stiff silty clay; firm to hard, generally hard silty clay till and loose to very dense, generally compact silty sand till, with layers of loose to very dense, generally compact sand and compact to very dense, generally compact silt deposits at various depths and locations. The wet sand and silts are water-bearing.

Upon the completion of borehole drilling, groundwater was recorded in the boreholes between El. 273.0 m and El. 330.9 m, dropping in the east southeast direction. The stabilized groundwater in the monitoring wells was recorded between El. 286.6 m and El. 332.4 m. The groundwater within the saturated sand and silt generally represents the permanent groundwater regime at the site. Perched water also exists in certain areas at shallower depths. The groundwater level will fluctuate with seasons.


In excavation, groundwater yield from the clay and tills will be slow and limited in quantity, whereas the groundwater yield from the saturated sand and silts below the water level will be appreciable and persistent.

It is understood that the property will be developed into a residential subdivision. Detailed design of the development, however, is not available at the time this report is prepared. The geotechnical findings which warrant special consideration are presented below:

1. The topsoil and ploughed soil must be removed for the development. The thickness of topsoil and ploughed soil may vary or becomes thicker in some areas, especially in the treed areas and depressed areas. In order to prevent

- overstripping, a diligent control of the stripping operation will be required. A test pit programme can be carried out prior to or during construction to determine the thickness of the topsoil and ploughed soils.
- 2. The topsoil is void of engineering value. It must not be buried within the building envelope or deeper than 1.2 m below the exterior finished grade of the development. It can only be used for landscaping and landscape contouring purposes.
- 3. The weathered soils are not suitable to support any structure sensitive to movement. They must be subexcavated and sorted free of topsoil inclusions or deleterious materials before it is reused as engineered fill or structural backfill.
- 4. The sound natural soils below the topsoil, ploughed soil, and weathered soils, are suitable for normal spread and strip footing construction for the proposed buildings. The footings must be designed in accordance with the recommended bearing pressures in Section 6.1 and the footing subgrade must be inspected by a geotechnical engineer to ensure that its condition is compatible with the design of the foundations.
- 5. The footings must be maintained at least 0.5 m above the groundwater levels. If groundwater seepage is encountered during excavation, or where the subgrade of the normal foundations is found to be wet, the subgrade should be protected by a concrete mud-slab immediately after exposure. Dewatering may be required prior to and during construction.
- 6. Where earth fill is required to raise the site, or where extended footings are necessary, it is generally more economical to place engineered fill for normal footing, sewer and road construction.
- 7. A Class 'B' bedding, consisting of compacted 20-mm Crusher-Run
 Limestone, or equivalent, is recommended for the construction of the
 underground services. The pipe joints should be leak proof or wrapped with a

waterproof membrane. Where saturated soils are present or extensive dewatering is required, a Class 'A' bedding will be required.

8. All excavation should be carried out in accordance with Ontario Regulation 213/91.

The recommendations appropriate for the project described in Section 2.0 are presented herein. One must be aware that the subsurface conditions may vary between boreholes. Should this become apparent during construction, a geotechnical engineer must be consulted to determine whether the following recommendations require revision.

6.1 Foundations

It is assumed that the site will be regraded for the proposed development. It is generally more economical to place engineered fill for normal footing, sewer and pavement construction. Soil bearing pressures of 150 kPa (SLS) and 250 kPa (ULS) are recommended for the design of building foundations, consisting of normal spread and strip footings founded on the engineered fill or on the sound native soil stratum. The requirements for engineered fill construction are discussed in Section 6.2.

The appropriate founding levels in the natural soils range from $1.0\pm$ to $2.5\pm$ m from the prevailing ground surface, depending on the location.

The recommended soil pressures (SLS) incorporate a safety factor of 3. The total and differential settlements of the footings are estimated to be 25 mm and 15 mm, respectively.

One must be aware that the recommended bearing pressures are given as a guide for foundation design and the soils at the bearing level must be confirmed by inspection

Hydrogeological Investigation, Water Balance and Catchment-Based Water Balance 7370 Centre Road, Uxbridge, Ontario Preliminary Report

Prepared For:

Bridge Brook Corporation

Prepared By:

Beacon Environmental Limited

Date: Project:

March 2021 217431.2

Table 1. Summary of Groundwater Monitoring Well Conditions

Location ID	Reported Date of	Approxima	ate Location	Approximate Ground Surface	Reported Screened Interval	Soils Reported at	Approximate SPT N-Value at
Location iD	Construction	Latitude	Longitude	SoilEng, 2018 (Beacon, 2019) ³	mbgl (masl) ⁵	Screened Interval	Screened Interval
BH3 ¹	December 15, 2017	44.1130°	-79.1416°	<i>305.0</i> (304.421)	2.4 to 6.1 (302.0 to 298.3)	Silty Clay Till	37 to 27
BH6 (S) ²	_ 2	_ 2	_ 2	(288.078)	_ 2	BOW 7.01 m on March 16, 2020 ²	- 2
BH6 (D)	December 12, 2017	44.1148°	-79.1378°	287.9 (288.075)	11.6 to 15.2 (276.4 to 272.9)	Silty Clay Till	42 to 74
ВН7	December 15, 2017	44.1138°	-79.1399°	297.8 (297.606)	2.4 to 6.1 (295.2 to 291.5)	Silty Sand Till	20 to 48
BH9 (S) ²	_ 2	_ 2	_ 2	(323.17)	_ 2	BOW 6.95 m on March 16, 2020 ²	- 2
BH9 (D)	December 20, 2017	44.1135°	-79.1447°	321.9 (323.343)	11.6 to 15.2 (311.7 to 308.1)	Silty Clay Till to Silt	68 to 74
BH10	December 21, 2017	44.1129°	-79.1474°	332.6 (332.254)	2.4 to 6.1 (329.8 to 326.1)	Silty Sand Till to Silty Clay Till	18 to >100
BH11	November 27, 2017	44.1158°	-79.1380°	291.4 (289.224)	2.4 to 6.1 (286.8 to 283.1)	Silty Sand Till	35 to >100
BH13	January 15, 2018	44.1148°	-79.1448°	322.6 (322.284)	2.4 to 6.1 (319.8 to 316.8)	Sand to Silty Clay Till	62 to >100

Italics – indicates data collected by others (SoilEng, 2018)

BOW - "bottom of well"

¹ BH3 was confirmed destroyed

² borehole logs were not provided in the geotechnical report

³ ground elevations provided by SoilEng.

⁴ elevation measurements from survey carried out March 19, 2020.

⁵ masl measurements corrected to survey carried out March 19, 2020 using the mbgl measurements in SoilEng, 2018.

Table 2. Summary of Measured Groundwater Levels

	Approximate	Annrovimoto				Grou	ındwater N	/leasureme	ents			
		Approximate Ground	2018						2019		2020	
Location ID	Top of Pipe	Surface Elevation	Upon Completion	Jan 31	Mar 22	June19 and July 4	Sept 6	Dec 4	Sept 11	Mar 16	Apr 28	Aug 25
	masl (mbgl)	masl	mbgs (masl)	mbgs (masl) ³	mbgs (masl)	mbgs (masl)	mbgs (masl)	mbgs (masl)				
ВН3		(304.421)	302.3	0.4 (304.0)	0.5 (303.9)	1.1 (303.3)	0.7 (303.7)	0.2 (304.2)		confirmed	destroyed	
BH6 S	+ 0.83	(288.078)	_ 2	_ 2	1.2 (286.8)	1.4 (286.6)	1.8 (286.2)	0.9 (287.2)	2.44 (285.63)	0.87 (287.13)	1.2 (286.87)	2.49 (285.59)
BH6 D	+0.70	(288.075)	273.0	1.3 (286.7)	1.4 (286.6)	1.6 (286.4)	2.0 (286.0)	1.1 (286.9)	2.81 (285.26)	0.98 (287.10)	1.45 (286.63)	2.80 (285.27)
BH7	+0.80	(297.606)	293.0	0.9 (296.7)	1.1 (296.5)	2.2 (295.4)	2.5 (295.1)	0.5 (297.1)	3.91 (293.70)	1.04 (296.56)	1.71 (295.90)	3.95 (293.65)
BH9 S	+ 0.82	(323.170)	_ 2	_ 2	1.0 (322.1)	2.1 (321.0)	2.3 (320.8)	0.7 (322.4)	3.39 (319.78)	1.30 (321.87)	1.50 (321.67)	3.20 (319.97)
BH9 D	+ 0.82	(323.343)	307.3	7.4 (315.9)	7.5 (315.8)	7.9 (315.4)	8.1 (315.2)	7.4 (315.9)	8.9 (314.44)	7.53 (315.81)	7.74 (315.60)	8.92 (314.42)
BH10	+ 0.93	(332.254)	329.0	0.2 (332.0)	0.9 (331.3)	1.7 (330.5)	1.4 (330.8)	0.3 (331.9)	2.39 (329.85)	0.52 (331.73)	1.20 (331.05)	2.22 (330.03)
BH11	+ 0.91	(289.224)	290.2	1.1 (288.1)	1.1 (288.1)	1.4 (287.8)	1.8 (287.4)	0.7 (286.6)	2.56 (286.66)	0.54 (288.68)	1.07 (288.15)	2.56 (286.66)
BH13	+ 0.73	(322.284)	319.0	3.5 (318.8)	3.3 (319.0)	3.2 (319.0)	3.7 (318.6)	3.7 (317.8)	4.47 (317.81)	3.08 (319.20)	3.24 (319.04)	4.59 (317.69)

Italics – indicates data collected by others (SoilEng, 2018)

Grey shading - indicates water level measured at the time of drilling completion - water levels measured at the time of completion are not directly comparable to the other measurements.

Bold values – indicates the highest measured groundwater levels

² reference to the shallow nested wells were not provided in the geotechnical report (SoilEng, 2018) – water levels are found in the subsequent monitoring program letters.

³ masl measurements corrected to survey carried out March 19, 2020 using the mbgl measurements in SoilEng, 2018.

Table 4. Summary of Estimated Infiltration Rates

Location ID	Soil Description	Approximate Test Depth (mbgl)	Estimated Field-Saturated Hydraulic Conductivity K _{fs} (cm/s)	Theoretical K _{fs} @ 4°C "freshet" K _{fs} (cm/s)	Theoretical K _{fs} @ 24°C "summer" K _{fs} (cm/s)	Estimated Infiltration Rate ¹ (mm/hr)	Correction Factor Used	Estimated Design Infiltration Rate ² (mm/hr)
PT20-1 (near BH6)	Brown silty sand, rootlets, moist	0.42	9 x 10 ⁻⁵	8 x 10 ⁻⁵	1 x 10 ⁻⁴	49	2.5	20
PT20-2 (near BH7)	Brown silty sand, rootlets, moist	0.26	4 x 10 ⁻⁵	3 x 10 ⁻⁵	6 x 10 ⁻⁵	42	2.5	17
PT20-3 (near BH11)	Brown silty sand, rootlets, moist	0.62	4 x 10 ⁻⁵	3 x 10 ⁻⁵	5 x 10⁻⁵	42	2.5	17

Notes:

mbgl = metres below ground surface cm/s = centimetres per second mm/hr = millimetres per hour

¹ – based on Estimated Field-Saturated Conductivity and Table C1 from TRCA and CVCA (2010).

² – correction factor in accordance with Table C2 from TRCA and CVCA (2010).

4.2 Global Site-Specific Water Balance

4.2.1 Pre-Development Constraints

The existing pre-development conditions of the subject property includes three general vegetation types, including 'moderately rooted crops' (corn), 'mature forest', and 'swamps and marshes', as summarized in **Table 6.** A small amount of land dedicated to a dirt driveway bisects the property and is characterized as impermeable, due to long term compaction.

Table 6. Existing Pre-Development Conditions

Existing Catchment Land Use	Approximate Pervious Land Area (m²)	Approximate Impervious Land Area (m²)	Sums (m²)
Principle Area – (corn fields)	349,668	-	349,668
Mature Forest Areas (areas defined as FOD 1)	41,220	-	41,220
Marshes and Swamp Areas (areas defined as MAS2-1 ¹ and SWT-2 ¹)	9,984		9,984
Driveway (4 metres wide by 732 metres long)	-	2,928	2,928
Total Areas	400,872	2,928	403,800

FOD - 'deciduous forest areas'

MAS2-1 - 'Cattail Mineral Shallow Marsh'SWT-2 - 'Willow Mineral Thicket Swamp'

As summarized in **Table 6**, the area of the subject property used in the calculations was 403,800 m² in area, which includes approximately 2,928 m² of impermeable area.

¹ Source: Figure 2 – Existing Conditions (Beacon; August, 2020)

4.2.2 Post-Development Constraints

Post-development conditions for Phase One Conditions were based on drawings provided by SCS, dated December 2020 (**Figure**; **Appendix A**). The proposed conditions of the subject property include one general vegetation type which have been classified as Urban Lawn/Shallow Rooted Crops, as well as impervious lands comprised of concrete pavements, asphalt pavements, and building structures, as summarized in **Table 7**.

Table 7. Proposed Post-Development Conditions

Proposed Land Uses ^{1, 2}	Approximate Pervious Land Area (m²)	Approximate Impervious Land Area (m²)	Sums (m²)
	Area within FOI Catchment	Area within FOI Catchment	
Catchment 201	104,632	150,568	255,200
Catchment 202	21,120	1,880	23,000
Catchment 203 (Wet SWMP 1)	8,700	8,700	17,400
Catchment 204	21,318	34,782	56,100
Catchment 205 (Dry SWMP 1)	3,213	3,087	6,300
Catchment 206	371	329	700
Catchment 207	1,590	1,410	3,000
Catchment 208	1,007	893	1,900
Uxbridge Brook NHS	40,200	-	40,200
Total	202,941	201,649	403,800

¹ Based on information provided by SCS (December 2020).

The subject property remains approximately 403,800 m² in area. Impermeable areas are increased from approximately 1% of the subject property in pre-development conditions, to approximately 50% of the subject property in post-development conditions.

4.2.3 Comparison of Pre-Development and Post-Development Water Balance Conditions

The pre-development hydrologic budget and post-development hydrologic budget for the subject property was estimated based on the existing catchment conditions summarized above. The estimated pre-development conditions are compared to anticipated post-development conditions in **Table 8**, below.

² These represent the area of each catchment limited to the subject property that are interpreted to flow toward the FOI.SWMP

⁻ storm water management pond

	Pre-Development Conditions	Post-Development Conditions			
Component	(m³ per annum)	(m³ per annum)	Relative Difference from Pre- Development (m³ per annum)		
(P) Precipitation	329,905	329,905	-		
(ET) Evapotranspiration	292,285	150,568	-141,717		
(Q _G) Infiltration	60,883	31,668	-29,215		
(Qs) Run-off	59.532	258.987	+199.455		

Table 8. Theoretical Average Annual Water Budgets

Based on the summary of analyses provided in **Table 8**, it is noted that the proposed changes to the subject property are anticipated to result in an annual infiltration decrease of approximately 27,764 m³, and an annual runoff increase of approximately 199,455 m³ in comparison to existing conditions. Further details, including a monthly resolution breakdown, are provided in **Appendix D**.

Estimated decreases in infiltration volume and increases in run-off volume are interpreted to be due to relatively greater proposed impermeable area, as well as an exchange of moderately rooted crops (e.g. corn) with shallow rooted crops (e.g. urban lawns), which have a lower assigned water holding capacity (re: **Table 5**, above).

4.2.4 Low Impact Development (LID) Measures and Influence of SWMPs

Low Impact Development Measures located within the subject property area are proposed. These include Catchbasin Infiltration/Filtration Trenches and Rear Yard At-Surface Infiltration Trenches which effectively convert runoff volume from impermeable areas to infiltration volume. As well, a wet SWMP is proposed (Catchment 203) and a dry SWMP is proposed (Catchment 205). The wet SWMP contributes to evapotranspiration processes, and has an impermeable ratio of 50% (SCS, 2020). The dry SWMP contributes to evapotranspiration processes and infiltration processes.

The combined monthly influence of these proposed mitigation methods are provided in **Appendix D**.As shown, the LID measures appear to be least active during winter months, June, and September (limited by available runoff), and are most effective during the freshet months and fall rains.

4.2.5 Comparison of Pre-Development and Post-Development Catchment-Based Water Balance Conditions (Including Mitigations)

The pre-development hydrologic budget for the subject property was estimated based on the existing catchment conditions summarized above, and the post-development hydrologic budgets were estimated based on the Post-Development Drainage Plan and related mitigation measures, summarized above. The estimated pre-development conditions are compared to anticipated post-development conditions in **Table 9**, below. A more detailed analysis of the values summarized in **Table 9** is provided at monthly resolution in **Appendix D**.

130,409

+70,877

(Qs) Run-off

		Pre- Development FOI Catchment	•	ost-Development nditions	Proposed Post-Development Conditions with Mitigation Measures (Ultimate Conditions)		
	Component	(m³ per annum)	(m³ per annum)	Relative Difference from Pre- Development (m³ per annum)	(m³ per annum)	Relative Difference from Pre- Development (m³ per annum)	
(P)	Precipitation	329,905	329,905	-	329,905	-	
(ET)	Evapotranspiration	292,285	150,568	-141,717	150,568	-141,717	
(Q _G)	Infiltration	60,883	31,668	-29,215	160,246	+99,363	

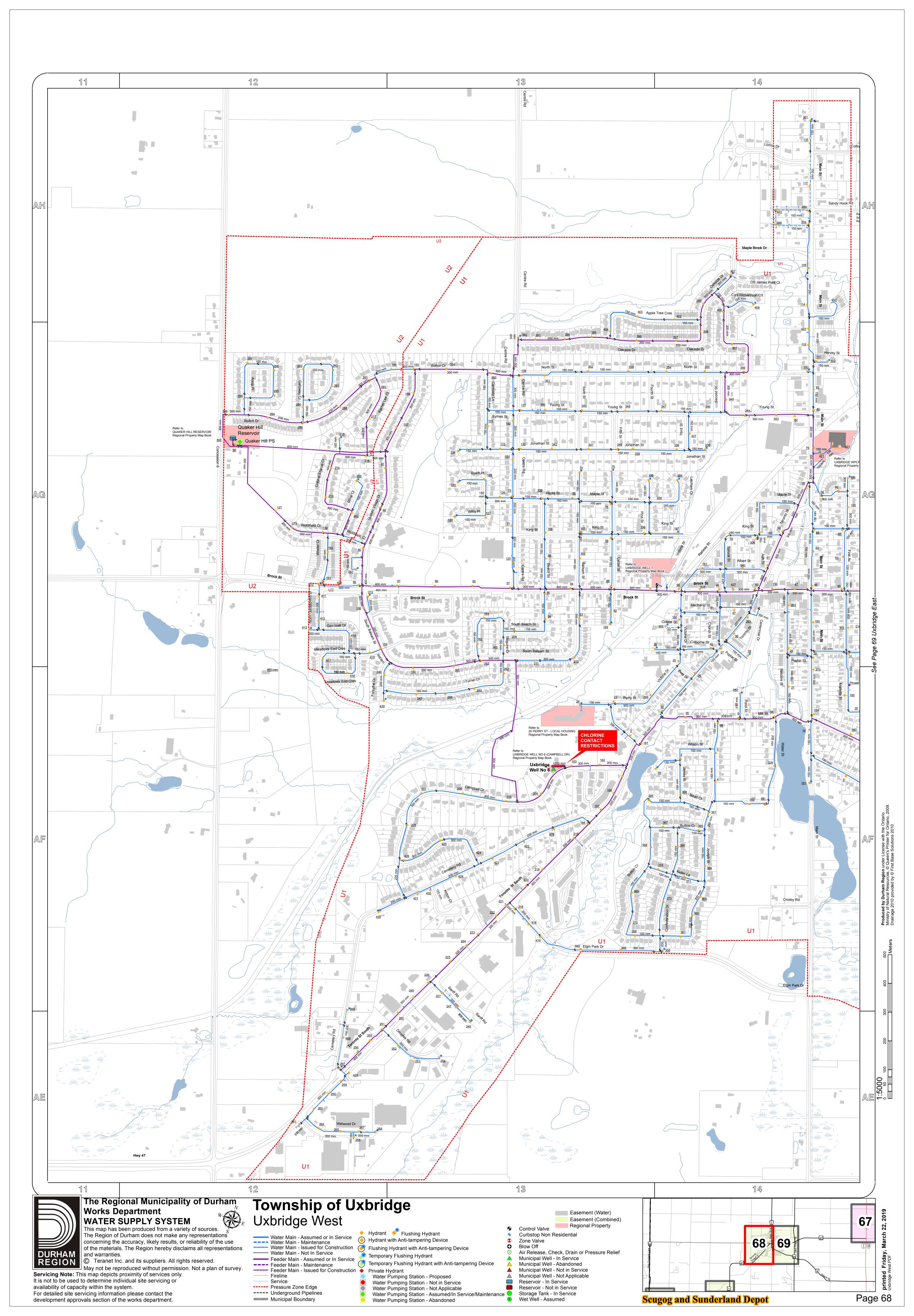
Table 9. Theoretical Average Catchment-Based Water Budgets

Based on the summary of analyses provided in **Table 9**, it is noted that the ultimate proposed conditions for the subject property are anticipated to result in an annual increase of infiltration by approximately 99,363 m³, and an annual increase in runoff by approximately 70,877 m³ in comparison to existing conditions.

258,987

+199,455

59,532


As shown in **Appendix D**, LID measures convert approximately 4,262 m³ to 18,498 m³ of theoretical runoff volume to theoretical infiltration per month. Resulting monthly infiltration trends appear to have generally higher infiltration volumes. Controlled runoff volumes result in more extreme wet periods, a longer freshet period and a drier summer season.

It is acknowledged that the values and coefficients presented above are standardized estimates. It is important to understand that infiltration rates and water holding capacities are dependent upon the effective porosity and hydraulic conductivity of the surficial soils which may vary over several orders of magnitude. As such, the resulting run-off and infiltration estimates inherit potentially large margins of error. These margins of error are recognized, but for the purposes of this assessment, the numbers used in the water balance calculations are considered reasonable estimates based on the site-specific conditions and useful for comparison of pre- to post- development conditions.

4.3 Catchment-Based Water Balance

A Catchment-Based Water Balance (CBWB) assessment was carried out for Beacon by Terrapex, limited to the catchment area belonging to the Feature of Interest (FOI). For the purposes of this report, the FOI is the portion of Uxbridge Brook located within the bounds of the subject property.

The purpose of the catchment-based water balance assessment is to compare the hydrological conditions of the proposed development conditions on the surfacewater reaching/'feeding' the FOI. For the purposes of this assessment, the FOI is defined as the portion of Uxbridge Brook and associated lower banks (presumed spring flood tier) located at the southeast corner of the subject property.

APPENDIX C HYDROLOGY MODELLING

EXISTING CONDITIONS VO6 MODEL SCHEMATIC

Project Name:Centre Road

Project No.: 2099 Date: December 2020 Designer: C.M.D.

102

Existing Conditions VO Parameter Summary

7370 Centre Road Project Number: 2099 Date: November 2020 Designer Initials: C.M.D.

NASHYD

Number	101	102
Description		
DT(min)	2	2
Area (ha)	40.26	1.07
CN*	86.0	86.0
IA(mm)	8.0	8.0
TP Method	Uplands	Uplands
TP (hr)	0.44	0.07

Existing Conditions CN Calculations

7370 Centre Road Project Number: 2099 Date: November 2020 Designer Initials: C.M.D.

Site Soils: (per Geotechnical Investigation Report prepared by Soil Engineers Ltd. dated February 16, 2018)

Soil Type Silty Clay **Hydrologic Soil Group**

С

			TABLE	OF CURVE	NUMBERS (CN's)**					
Land Use			Hydrologic Soil Type								
		Α	AB	В	BC	С	CD	D	'n'		
Meadow	"Good"	30	44	58	64.5	71	74.5	78	0.40	MTO	
Woodlot	"Fair"	36	48	60	66.5	73	76	79	0.40	MTO	
Gravel		76	80.5	85	87	89	90	91	0.30	USDA	
Lawns	"Good"	39	50	61	67.5	74	77	80	0.25	USDA	
Pasture/Rar	nge	58	61.5	65	70.5	76	78.5	81	0.17	MTO	
Crop		66	70	74	78	82	84	86	0.13	MTO	
Fallow (Bare	∍)	77	82	86	89	91	93	94	0.05	MTO	
Low Density	Residences	57	64.5	72	76.5	81	83.5	86	0.25	USDA	
Streets, pav	ed	98	98	98	98	98	98	98	0.01	USDA	

- 1. MTO Drainage Manual (1997), Design Chart 1.09-Soil/Land Use Curve Numbers
- 2. USDA (1986), Urban Hydrology for Small Watersheds, Table 2.2-Runoff Curve Numbers for Urban Areas

	HYDROLOGIC SOIL TYPE (%)										
	Hydrologic Soil Type										
Catchment	Α	AB	В	BC	С	CD	D	TOTAL			
101					100			100			
102					100			100			

	LAND USE (%)										
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Total	
					Range		(Bare)	Residences			
101	0.5	3.3				95.3			0.9	100.0	
102		0.9				99.1				100.0	

Note: Where STANDHYD command used (shaded), impervious fraction is not considered in CN determination, since %Imp directly input in STANDHYD command

	CURVE NUMBER (CN)										
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Weighted	
					Range		(Bare)	Residences		CN	
101	0.4	2.4	0.0	0.0	0.0	78.1	0.0	0.0	0.9	82	
102	0.0	0.7	0.0	0.0	0.0	81.2	0.0	0.0	0.0	82	

^{**} AMC II assumed

Existing Conditions CN Calculations

7370 Centre Road Project Number: 2099 Date: November 2020 Designer Initials: C.M.D.

	Input Values			
Step	Subcatchment:	101		102
1	CN (AMC II):	82		82
2	CN (AMC III) =	92		92
3	100 Year Precipitation, P =	104.07	mm	104.07
	·			

$$Q = \frac{(P - Ia)^2}{(P - Ia) + S}$$

$$S = \frac{(P - Ia)^2}{Q} - (P - Ia)$$

Q = rainfall excess or runoff, mm

S = potential maximum retention or available storage, mm

$$CN = 25400$$

 $S + 254$

$$S = 25400 - 254$$

CN* = modified SCS curve # that better reflects Ia conditions in Ontario

(Output Values			
	Subcatchment:	101		102
	S _{III} =	22.09	mm	22.09
	SCS Assumption of 0.2 S = Ia =	4.42	mm	4.42
4	$Q_{III} =$	81.57	mm	81.57
	Preferred Initial Abstraction, Ia =	8.0	mm	8.0
5	S* _{III} =	17.06	mm	17.05
6	CN* _{III} =	93.71	mm	93.71
	CN* _{III} =	94	Rounded	94
7	CN* _{II} =	86	convert	86

Explanation of Procedure

- 1 Determine CN based on typical AMC II conditions (attached)
- 2 Convert CN from AMC II to AMC III conditions (standard SCS tables)
- 3 Get precipitation depth P for 100 year storm
- 4 Using CN_{III} with Ia = 0.2S, compute Q_{III} for 100 year precipitation
- 5 For the same Q_{III}, compute S*_{III} using Ia=1.5mm (or otherwise determined)
- 6 Compute CN*_{III} using S*_{III}
- 7 Calculate CN*_{II} using SCS conversion table

Existing Conditions IA Calculations

7370 Centre Road Project Number: 2099 Date: November 2020 Designer Initials: C.M.D.

	LAND USE (%) - Existing Conditions											
Catchment												
					Range		(Bare)	Residences				
101	0.5	3.3				95.3			0.9	100.0		
102		0.9				99.1				100.0		

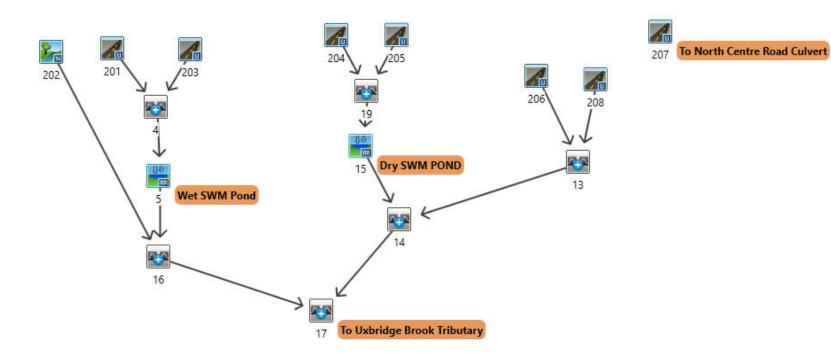
			I.A	VALUES (n	nm) - Existin	g Condition	S			
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Total
					Range		(Bare)	Residences		
IA (mm)	8	10	2	5	8	8	3	2	2	
101	0.0	0.3				7.6			0.0	8.0
102		0.1				7.9				8.0

^{*} IA values based on LSRCA guidelines

Existing Conditions Time to Peak Calculations

7370 Centre Road Project Number: 2099 Date: November 2020 Designer Initials: C.M.D.

Uplands Method:


Catchment ID	High Elevation	Low Elevation	Length (m)	Slope (%)	Land Cover Type	Velocity (m/s)	Time of Concentration (s)	Time of Concentration (hr)	Time to Peak (hr)
101a	335.65	333.25	257	0.93	Cultivated Straight Row	0.27	951.0	0.26	0.18
101b	333.25	322.75	119	8.82	Cultivated Straight Row	0.83	144.2	0.04	0.03
101c	322.75	310.08	265	4.78	Cultivated Straight Row	0.61	435.4	0.12	0.08
101d	310.08	302.25	128	6.12	Woodland	0.37	343.0	0.10	0.06
101e	302.25	298.22	127	3.17	Woodland	0.27	472.2	0.13	0.09
101									0.44
102a	303.75	293.42	140	7.38	Cultivated Straight Row	0.76	185.4	0.05	0.03
102b	293.42	287.29	126	4.87	Cultivated Straight Row	0.61	205.2	0.06	0.04
102									0.07

PROPOSED CONDITIONS VO6 MODEL SCHEMATIC

Project Name:Centre Road

Project No.: 2099 Date: February 2021 Designer: C.M.D.

Proposed Conditions VO Parameter Summary

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

NASHYD

Number	202
Description	
DT(min)	2
Area (ha)	7.26
CN*	86.0
IA(mm)	8.1
TP Method	Uplands
TP (hr)	0.41

STANDHYD

Number	201	203	204	205	206	207	208
Description							
DT(min)	2	2	2	2	2	2	2
Area (ha)	25.52	1.74	5.61	0.63	0.07	0.3	0.19
XIMP ^{1,2}	0.26	0.45	0.23	0.40	0.01	0.01	0.01
TIMP ²	0.59	0.50	0.62	0.49	0.47	0.47	0.47
CN*	73.0	73.0	73.0	73.0	73.0	73.0	73.0
IA(mm)	5.0	5.0	5.0	5.0	5.0	5.0	5.0
SLPP(%)	5	2	5	2	2	2	2
LGP(m)	40	40	40	40	40	40	40
MNP	0.25	0.25	0.25	0.25	0.25	0.25	0.25
DPSI (mm)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
SLPI(%)	5	2	5	2	2	2	1
LGI(m)	412.47	107.70	193.39	64.81	21.60	44.72	35.59
MNI	0.013	0.013	0.013	0.013	0.013	0.013	0.013

¹Note that where there is NO directly connected area (ie: roof runoff to grassed areas), the hydrology program does not accept XIMP=0%, therefore, XIMP = 1% has been used ²Note that where there is NO pervious area, the hydrology program does not accept TIMP and XIMP=100%, therefore, TIMP and XIMP = 99% has been used

Proposed Conditions CN Calculations

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Site Soils: (per Geotechnical Investigation Report prepared by Soil Engineers Ltd. dated February 16, 2018)

Soil Type Silty Clay **Hydrologic Soil Group**

С

			TABLE	TABLE OF CURVE NUMBERS (CN's)**												
Land Use				Hyd	rologic Soil	Гуре			Manning's	Source						
		Α	AB	В	BC	С	CD	D	'n'							
Meadow	"Good"	30	44	58	64.5	71	74.5	78	0.40	MTO						
Woodlot	"Fair"	36	48	60	66.5	73	76	79	0.40	MTO						
Gravel		76	80.5	85	87	89	90	91	0.30	USDA						
Lawns	"Good"	39	50	61	67.5	74	77	80	0.25	USDA						
Pasture/Rang	je	58	61.5	65	70.5	76	78.5	81	0.17	MTO						
Crop		66	70	74	78	82	84	86	0.13	MTO						
Fallow (Bare)		77	82	86	89	91	93	94	0.05	MTO						
Low Density I	Residences	57	64.5	72	76.5	81	83.5	86	0.25	USDA						
Streets, pave	d	98	98	98	98	98	98	98	0.01	USDA						

- 1. MTO Drainage Manual (1997), Design Chart 1.09-Soil/Land Use Curve Numbers
- 2. USDA (1986), Urban Hydrology for Small Watersheds, Table 2.2-Runoff Curve Numbers for Urban Areas

			HYDROL	OGIC SOIL	ΓΥΡΕ (%)			
			Hyd	drologic Soil	Гуре			
Catchment	Α	AB	В	BC	С	CD	D	TOTAL
202					100			100
201					100			100
203					100			100
204					100			100
205					100			100
206					100			100
207					100			100
208					100			100

				L	AND USE (%	5)				
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture Range	Crop	Fallow (Bare)	Low Density Residences	Impervious	Total
202	0.0	17.4	0.0	0.0	0.0	78.2	0.0	0.0	4.4	100.0
201	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
203	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
204	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
205	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
206	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
207	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0
208	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	100.0

Note: Where STANDHYD command used (shaded), impervious fraction is not considered in CN determination, since %Imp directly input in STANDHYD command

Note: Where on	WEDTTI D COMMIN	ana abba (bhaac	od), impervious i		isidered in Civid	•	ice /oilip direct	ily iliput ili OTAN	DITTE COMMINANC	
				CUR	/E NUMBER	(CN)				
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture	Crop	Fallow	Low Density	Impervious	Weighted
					Range		(Bare)	Residences	-	CN
202	0.0	12.7	0.0	0.0	0.0	64.2	0.0	0.0	4.3	81
201	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
203	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
204	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
205	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
206	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
207	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74
208	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	0.0	74

^{**} AMC II assumed

Proposed Conditions CN Calculations

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

	Input Values									
Step	Subcatchment:	202		201	203	204	205	206	207	208
1	CN (AMC II):	81		74	74	74	74	74	74	74
2	CN (AMC III) =	92		88	88	88	88	88	88	88
3	100 Year Precipitation, P =	104.07	mm	104.07	104.07	104.07	104.07	104.07	104.07	104.07
	·									

$$Q = \frac{(P - Ia)^2}{(P - Ia) + S}$$

$$S = \frac{(P - Ia)^2}{Q} - (P - Ia)$$

Q = rainfall excess or runoff, mm

S = potential maximum retention or available storage, mm

$$CN = \underline{25400}$$

S + 254

CN* = modified SCS curve # that better reflects Ia conditions in Ontario

	Output Values									
Ī	Subcatchment:	202		201	203	204	205	206	207	208
	S _{III} =	22.09	mm	34.64	34.64	34.64	34.64	34.64	34.64	34.64
	SCS Assumption of 0.2 S = Ia =	4.42	mm	6.93	6.93	6.93	6.93	6.93	6.93	6.93
4	Q _{III} =	81.57	mm	71.61	71.61	71.61	71.61	71.61	71.61	71.61
5	Preferred Initial Abstraction, Ia = $S_{\parallel \parallel}^*$	8.1 16.96	mm mm	5.0 37.99				5.0 37.99		5.0 37.99
6	CN* _{III} =	93.74	mm	86.99	86.99	86.99	86.99	86.99	86.99	86.99
7	CN* _{II} =	94 86	Rounded convert	87 73	87 73	87 73	87 73	87 73	87 73	87 73

Explanation of Procedure

- 1 Determine CN based on typical AMC II conditions (attached)
- 2 Convert CN from AMC II to AMC III conditions (standard SCS tables)
- 3 Get precipitation depth P for 100 year storm
- 4 Using CN_{III} with Ia = 0.2S, compute Q_{III} for 100 year precipitation
- 5 For the same Q_{III} compute S^{\star}_{III} using Ia=1.5mm (or otherwise determined)
- 6 Compute $\mathrm{CN^*_{III}}$ using $\mathrm{S^*_{III}}$
- 7 Calculate $\mathrm{CN^*_{II}}$ using SCS conversion table

Proposed Conditions IA Calculations

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

				L	AND USE (%	o)				
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture Range	Crop	Fallow (Bare)	Low Density Residences		Total
202		17.4				78.2			4.4	100.0
201				100.0						100.0
203				100.0						100.0
204				100.0						100.0
205				100.0						100.0
206				100.0						100.0
207				100.0						100.0
208				100.0						100.0

	IA VALUES (mm)									
Catchment	Meadow	Woodlot	Gravel	Lawns	Pasture Range	Crop	Fallow (Bare)	Low Density Residences	Impervious	Total
IA (mm)	8	10	2	5	8	8	3	2	2	
202		1.7				6.3			0.1	8.1
201				5.0						5.0
203				5.0						5.0
204				5.0						5.0
205				5.0						5.0
206				5.0						5.0
207				5.0						5.0
208				5.0						5.0

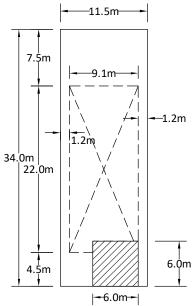
^{*} IA values based on LRSCA guidelines

Proposed Conditions Time to Peak Calculations

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Uplands Method:

Catchment ID	High Elevation	Low Elevation	Length (m)	Slope (%)	Land Cover Type	Velocity (m/s)	Time of Concentration (s)	Time of Concentration (hr)	Time to Peak (hr)
202a	335.65	333.25	257	0.93	Cultivated Straight Row	0.27	951.0	0.26	0.18
202b	333.25	322.75	119	8.82	Cultivated Straight Row	0.83	144.2	0.04	0.03
202c	322.75	310.08	265	4.78	Cultivated Straight Row	0.61	435.4	0.12	0.08
202d	310.08	302.25	128	6.12	Woodland	0.37	343.0	0.10	0.06
202e	302.25	299.27	90	3.31	Woodland	0.27	327.6	0.09	0.06
202									0.41


Proposed Conditions Percent Impervious Calculations

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

					S	tandHyd IDs	3		
			201	203	204	205	206	207	208
Catchm	ent Area (ha)		25.52	1.74	5.61	0.63	0.07	0.30	0.19
Land Use Areas	Timp	Ximp							
SWM Pond	50%	50%		1.55		0.51			
Park	15%	0%	1.70						
11.5m Frontage - Single Detached 1 ¹	58%	9%	4.77		2.42				
11.5m Frontage - Single Detached 1 (Front Half) ¹	71%	20%	0.49		0.50				
11.5m Frontage - Single Detached 1 (Rear Half) ¹	47%	0%		0.19		0.12	0.07	0.30	0.19
11.0m Frontage - Links ¹	60%	10%	2.00		1.01				
10.4m Frontage - Single	58%	12%	7.08						
Detached 2 ¹ Laneway Townhouse ¹	86%	45%	0.89						
Townhouse Fronting		4570	0.09						
Standard R.O.W.	62%	29%	0.39						
20.0m R.O.W.	60%	45%	6.75		1.43				
6.0m Laneway R.O.W.	100%	100%	0.22						
Single Detached Driveways Within R.O.W.	100%	100%	1.04		0.25				
Townhouse Driveways Within R.O.W.	100%	100%	0.01						
Existing 6th Concession Road Imperviousness	100%	100%	0.18						
	1	Fotal Land Use = Timp = Ximp =	25.52 59% 26%	1.74 50% 45%	5.61 62% 23%	0.63 49% 40%	0.07 47% 0%	0.30 47% 0%	0.19 47% 0%

¹Lot percent impervious (TIMP & XIMP) calculations per Figures C.1 - C.3.

TYPICAL 11.5m x 34.0m SINGLE DETACHED 1

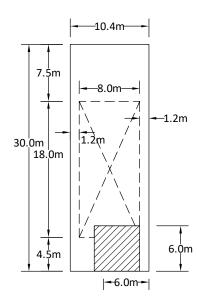
FRONT DRAINAGE AREA = 178.3 m²
FRONT DRAINAGE ROOF AREA = 91.1 m²
DRIVEWAY AREA = 36.0 m²
FRONT DRAINAGE PERCENT IMPERVIOUS = 71%
FRONT DRAINAGE DIRECTLY CONNECTED IMPERVIOUS= 20%

REAR DRAINAGE AREA = 212.8 m²
REAR DRAINAGE ROOF AREA = 100.1 m²
REAR DRAINAGE PERCENT IMPERVIOUS = 47%
REAR DRAINAGE DIRECTLY CONNECTED IMPERVIOUS = 0%

TOTAL DRAINAGE AREA = 391.0 m²

TOTAL ROOF AREA = 191.2 m²

TOTAL DRIVEWAY AREA = 36.0 m²


TOTAL AREA PERCENT IMPERVIOUS = 58%

TOTAL AREA DIRECTLY CONNECTED IMPERVIOUS = 9%

*NOTE: ALL ROOF LEADERS TO BE DIRECTED TO PERVIOUS SURFACES.

*NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS TO BE PROVIDED AT DETAILED DESIGN STAGE.

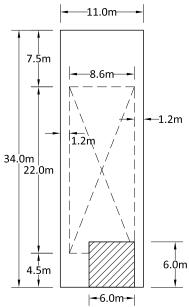
TYPICAL 10.4m x 30.0m SINGLE DETACHED 2

FRONT DRAINAGE AREA = 140.4 m²
FRONT DRAINAGE ROOF AREA = 63.0 m²
DRIVEWAY AREA = 36.0 m²
FRONT DRAINAGE PERCENT IMPERVIOUS = 71%
FRONT DRAINAGE DIRECTLY CONNECTED IMPERVIOUS= 26%

REAR DRAINAGE AREA = 171.6 m²
REAR DRAINAGE ROOF AREA = 72.0 m²
REAR DRAINAGE PERCENT IMPERVIOUS = 42%
REAR DRAINAGE DIRECTLY CONNECTED IMPERVIOUS = 0%

TOTAL DRAINAGE AREA = 312.0 m²

TOTAL ROOF AREA = 144.0 m²


TOTAL DRIVEWAY AREA = 36.0 m²

TOTAL AREA PERCENT IMPERVIOUS = 58%

TOTAL AREA DIRECTLY CONNECTED IMPERVIOUS = 12%

TYPICAL LAYOUT FOR SINGLE 7370 CENTRE ROAD **UXBRIDGE DETACHED DWELLING** PROJECT No: FIGURE No: 30 CENTURIAN DRIVE, SUITE 100 **DESIGNED BY:** C.M.D. CHECKED BY: N.D.M. MARKHAM, ONTARIO L3R 8B8 consulting 2099 TEL: (905) 475-1900 C-1 SCALE: 1:500 DATE: **MARCH 2021** FAX: (905) 475-8335

TYPICAL 11.0m x 34.0m LINKS

FRONT DRAINAGE AREA = 170.5 m² FRONT DRAINAGE ROOF AREA = 85.6 m² DRIVEWAY AREA = 36.0 m² FRONT DRAINAGE PERCENT IMPERVIOUS = 71% FRONT DRAINAGE DIRECTLY CONNECTED IMPERVIOUS= 21%

REAR DRAINAGE AREA = 203.5 m² REAR DRAINAGE ROOF AREA = 94.6 m² **REAR DRAINAGE PERCENT IMPERVIOUS = 46%** REAR DRAINAGE DIRECTLY CONNECTED IMPERVIOUS= 0%

> TOTAL DRAINAGE AREA = 374.0 m² TOTAL ROOF AREA = 189.2 m² TOTAL DRIVEWAY AREA = 36.0 m² TOTAL AREA PERCENT IMPERVIOUS = 60%

TOTAL AREA DIRECTLY CONNECTED IMPERVIOUS = 10%

*NOTE: ALL SINGLE DETACHED ROOF LEADERS TO BE DIRECTED TO PERVIOUS SURFACES. *NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS TO BE PROVIDED AT DETAILED DESIGN STAGE.

TYPICAL LANEWAY **TOWNHOUSE (6.1m UNITS)**

FRONT DRAINAGE ROOF AREA = 430.6 m² SIDEWALK AREA = 27.0 m² FRONT DRAINAGE PERCENT IMPERVIOUS = 79%

FRONT DRAINAGE DIRECTLY CONNECTED IMPERVIOUS= 0%

REAR DRAINAGE AREA = 531.6 m² REAR DRAINAGE ROOF AREA = 430.6 m²

DRIVEWAY AREA = 68.8 m²

REAR DRAINAGE PERCENT IMPERVIOUS = 94%

REAR DRAINAGE DIRECTLY CONNECTED IMPERVIOUS = 94%

TOTAL DRAINAGE AREA = 1,108.8 m²

TOTAL ROOF AREA = 861.2 m²

DIRECTLY CONNECTED TOTAL ROOF AREA = 430.6 m²

SIDEWALK AREA = 27.0 m²

DRIVEWAY AREA = 68.8 m²

TOTAL AREA PERCENT IMPERVIOUS = 86%

TOTAL AREA DIRECTLY CONNECTED IMPERVIOUS = 45%

7370 CENTRE ROAD **UXBRIDGE**

TYPICAL LAYOUT FOR SINGLE DETACHED **DWELLING AND LANEWAY TOWNHOUSE DWELLING**

30 CENTURIAN DRIVE, SUITE 100 MARKHAM, ONTARIO L3R 8B8

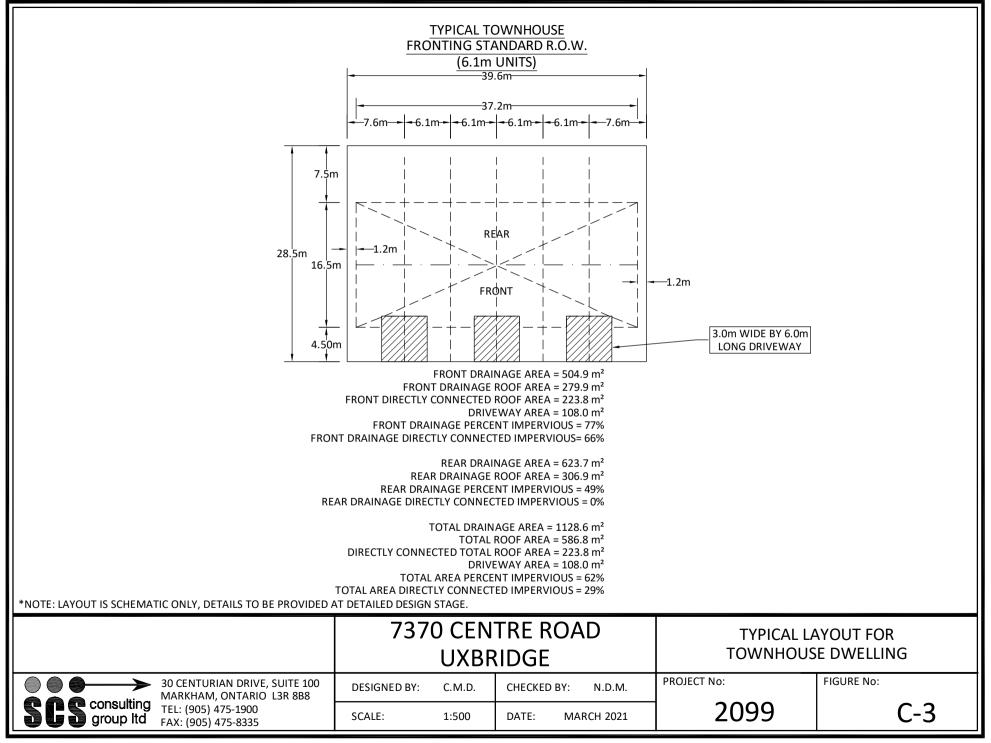
TEL: (905) 475-1900 FAX: (905) 475-8335 DESIGNED BY: SCALE:

C.M.D. 1:500

CHECKED BY:

DATE:

N.D.M.


MARCH 2021

PROJECT No:

2099

C-2

FIGURE No:

APPENDIX D HYDRAULICS AND SWM FACILITY SIZING CALCULATIONS

Wet SWM Pond Permanent Pool Sizing

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Weighted Impervious Calculation

Catchment ID	Total Area	Imperviousness	Impervious Area
	(ha)	(%)	(ha)
201	25.52	59	15.06
203	1.74	50	0.87
Total	27.26	58	15.93

Wet SWM Pond Permanent Pool Sizing

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

PERMANENT POOL

Level of Protection = Enhanced (Level 1)

Weighted Impervious = <mark>58</mark> %

> Drainage Area = 27.26 ha

SWMP Type = 4. Wet Pond

Required Permanent Pool (including 40m³/ha for extended detention)= Required Permanent Pool (minus 40m³/ha for extended detention)= 198.0 m³/ha

158 m³/ha

Required Permanent Pool = 4307 m³

TABLE 3.2 - WATER QUALITY STORAGE REQUIREMENTS (FROM MOE SWM PLANNING AND DESIGN MANUAL - 2003)

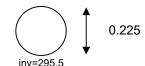
Protectio	SWMD Type	Storage Volume (m ³	ha) for Impe	rvious Leve	el
n Level	SWMP Type	35%	55%	70%	85%
Enhance	1. Infiltration	25	30	35	40
d (Level	2. Wetlands	80	105	120	140
1)	3. Hybrid Wet Pond/Wetland	110	150	175	195
',	4. Wet Pond	140	190	225	250
	1. Infiltration	20	20	25	30
Normal	2. Wetlands	60	70	80	90
(Level 2)	3. Hybrid Wet Pond/Wetland	75	90	105	120
	4. Wet Pond	90	110	130	150
	1. Infiltration	20	20	20	20
Basic	2. Wetlands	60	60	60	60
(Level 3)	Hybrid Wet Pond/Wetland	60	70	75	80
(Level 3)	4. Wet Pond	60	75	85	95
	5. Dry Pond (Continuous Flow)	90	150	200	240

Wet SWM Pond Permanent Pool Sizing

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Elevation (m)	Area (m²)	Area (m²)	H (m)	Vol (m³)	Volume (m³)	Storage (m³)	Depth (m)
294.00	2438				0		0
		3119	1	3118.5			
295.00	3799				3119		1
		4383	0.5	2191.5			
295.50	4967				5310		1.5

Permanent Pool Volume Required = $\frac{4307}{\text{Permanent Pool Volume Provided}} = \frac{4307}{5310} \text{ m}^3$



CONTROL STRUCTURE SUMMARY SWM POND

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Orifice 1

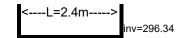
Invert = 295.50 m Size = 0.225 m Orifice Coefficient, C = 0.62 Obvert = 295.725 m

Broad Crested Weir (Emergency Spillway)


Length = 18.0 m

Elevation = 297.20 m

Crest Breadth = 5.2 m


Side Slope = 20

(0 = vertical, 1 = 1H to 1V, 3 = 3H to 1 v)

Broad Crested Weir (Weir 1)

Length = 2.4 m Elevation = 296.34 m Crest Breadth = 0.2 m

OUTFLOW SUMMARY SWM POND

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Starting Water Level (m) = 295.50 Elevation Increment (m) = 0.02

Shading represents Storage-Discharge pairings used in VO modelling

Upstream	Orifice 1	Emergency Spillway	Weir 1	Stage	Total	Storage	Detention		
Elevation	Outflow	Outflow	Outflow	Stage	Flow	Storage	Time	4 Hour Chicago	12 Hour SCS
(m)	(cms)	(cms)	(cms)	(m)	(cms)	(m³)	(hrs)	Storm	Storm
295.50	0.000	0.000	0.000	295.50	0.000	0	0.0	Orific	e 1
295.52	0.000	0.000	0.000	295.52	0.000	100	0.0	011110	
295.54	0.002	0.000	0.000	295.54	0.002	201	0.0		
295.56	0.003	0.000	0.000	295.56	0.003	302	11.3		
295.58	0.006	0.000	0.000	295.58	0.006	405	17.4		
295.60	0.009	0.000	0.000	295.60	0.009	508	21.2		
295.62	0.009	0.000	0.000	295.62	0.009	613	24.4		
295.64	0.018	0.000	0.000	295.64	0.018	719	26.5		
295.66 295.68	0.024 0.028	0.000 0.000	0.000 0.000	295.66 295.68	0.024 0.028	825 932	27.9 29.1		
295.70	0.020	0.000	0.000	295.70	0.020	1041	30.1		
295.72	0.036	0.000	0.000	295.72	0.036	1150	31.0		
295.74	0.039	0.000	0.000	295.74	0.039	1260	31.8		
295.76	0.042	0.000	0.000	295.76	0.042	1371	32.5		
295.78	0.045	0.000	0.000	295.78	0.045	1483	33.3		
295.80	0.047	0.000	0.000	295.80	0.047	1596	33.9		
295.82	0.050	0.000	0.000	295.82	0.050	1710	34.6		
295.84	0.052	0.000	0.000	295.84	0.052	1825	35.2		
295.86	0.054	0.000	0.000	295.86	0.054	1941	35.8		
295.88	0.056	0.000	0.000	295.88	0.056	2058	36.4		
295.90	0.059	0.000	0.000	295.90 295.92	0.059	2176	37.0		
295.92 295.94	0.061 0.062	0.000 0.000	0.000 0.000	295.92	0.061 0.062	2294 2414	37.5 38.1		
295.96	0.062	0.000	0.000	295.94	0.062	2535	38.6		
295.98	0.066	0.000	0.000	295.98	0.066	2656	39.1		
296.00	0.068	0.000	0.000	296.00	0.068	2778	39.6		
296.02	0.070	0.000	0.000	296.02	0.070	2902	40.1		
296.04	0.071	0.000	0.000	296.04	0.071	3026	40.6		
296.06	0.073	0.000	0.000	296.06	0.073	3151	41.1		
296.08	0.075	0.000	0.000	296.08	0.075	3276	41.6		
296.10	0.076	0.000	0.000	296.10	0.076	3402	42.0		
296.12	0.078	0.000	0.000	296.12	0.078	3529	42.5		
296.14	0.079	0.000	0.000	296.14	0.079	3657	42.9		
296.16	0.081 0.082	0.000	0.000 0.000	296.16 296.18	0.081 0.082	3785 3914	43.4 43.8	2 Year	
296.18 296.20	0.082	0.000 0.000	0.000	296.16	0.082	4044	43.6	Z feal	
296.22	0.085	0.000	0.000	296.22	0.085	4175	44.7		
296.24	0.086	0.000	0.000	296.24	0.086	4306	45.1		
296.26	0.088	0.000	0.000	296.26	0.088	4438	45.5		
296.28	0.089	0.000	0.000	296.28	0.089	4571	46.0		
296.30	0.091	0.000	0.000	296.30	0.091	4704	46.4		
296.32	0.092	0.000	0.000	296.32	0.092	4839	46.8		2 Year
296.34	0.093	0.000	0.000	296.34	0.093	4974	47.2	Weir 1 - Extend	led Detention
296.36	0.094	0.000	0.011	296.36	0.105	5109	47.6		
296.38	0.096	0.000	0.030	296.38	0.125	5246	47.9		
296.40 296.42	0.097 0.098	0.000 0.000	0.055 0.084	296.40 296.42	0.152 0.182	5383 5521	48.2 48.4		
296.44	0.098	0.000	0.004	296.42	0.162	5659	48.6	5 Year	
296.46	0.101	0.000	0.115	296.46	0.255	5799	48.8	3 . 541	
296.48	0.102	0.000	0.195	296.48	0.297	5939	48.9		
296.50	0.103	0.000	0.238	296.50	0.341	6079	49.0		
296.52	0.104	0.000	0.284	296.52	0.388	6221	49.1		
296.54	0.105	0.000	0.343	296.54	0.449	6363	49.2	10 Year	5 Year
296.56	0.106	0.000	0.396	296.56	0.503	6506	49.3		
296.58	0.107	0.000	0.451	296.58	0.559	6649	49.4		
296.60	0.109	0.000	0.509	296.60	0.618	6793	49.4		
296.62 296.64	0.110 0.111	0.000 0.000	0.569 0.682	296.62 296.64	0.679 0.793	6938 7083	49.5 49.6	25 Year	
296.66	0.111	0.000	0.062	296.64	0.793	7003	49.6	20 I Edi	10 Year
296.68	0.112	0.000	0.732	296.68	0.863	7375	49.7		10 TGai
296.70	0.114	0.000	0.897	296.70	1.011	7522	49.7		
296.72	0.115	0.000	0.973	296.72	1.088	7670	49.7		
296.74	0.116	0.000	1.093	296.74	1.209	7818	49.8		
296.76	0.117	0.000	1.176	296.76	1.293	7967	49.8		
296.78	0.118	0.000	1.261	296.78	1.379	8116	49.8		
296.80	0.119	0.000	1.348	296.80	1.467	8267	49.9		25 Year
296.82	0.120	0.000	1.437	296.82	1.557	8417	49.9		

OUTFLOW SUMMARY SWM POND

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Starting Water Level (m) = 295.50 Elevation Increment (m) = 0.02

Shading represents Storage-Discharge pairings used in VO modelling

Upstream	Orifice 1	Emergency Spillway	Weir 1	Stage	Total	Storage	Detention	4 Hour Chicago	12 Hour SCS
Elevation	Outflow	Outflow	Outflow		Flow		Time	Storm	Storm
(m)	(cms)	(cms)	(cms)	(m)	(cms)	(m³)	(hrs)	Otoriii	Otoriii
296.84	0.121	0.000	1.544	296.84	1.665	8569	49.9		
296.86	0.122	0.000	1.638	296.86	1.760	8721	49.9		
296.88	0.123	0.000	1.733	296.88	1.856	8873	50.0	100 Year	
296.90	0.124	0.000	1.830	296.90	1.954	9027	50.0		
296.92	0.125	0.000	1.929	296.92	2.054	9180	50.0		
296.94	0.126	0.000	2.041	296.94	2.167	9335	50.0		
296.96	0.127	0.000	2.144	296.96	2.271	9490	50.1		
296.98	0.128	0.000	2.249	296.98	2.376	9646	50.1		
297.00	0.129	0.000	2.355	297.00	2.484	9802	50.1		
297.02	0.130	0.000	2.463	297.02	2.592	9959	50.1		
297.04	0.130	0.000	2.572	297.04	2.703	10117	50.1		100 Year
297.06	0.131	0.000	2.683	297.06	2.815	10275	50.1		
297.08	0.132	0.000	2.796	297.08	2.928	10434	50.2		
297.10	0.133	0.000	2.910	297.10	3.043	10593	50.2		
297.12	0.134	0.000	3.026	297.12	3.160	10754	50.2		
297.14	0.135	0.000	3.143	297.14	3.278	10914	50.2		
297.16	0.136	0.000	3.261	297.16	3.397	11076	50.2		
297.18	0.137	0.000	3.381	297.18	3.518	11238	50.2		
297.20	0.138	0.000	3.503	297.20	3.640	11400	50.2	Emergency	Spillway
297.22	0.138	0.078	3.626	297.22	3.842	11563	50.2	,	
297.24	0.139	0.224	3.750	297.24	4.113	11727	50.3		
297.26	0.140	0.420	3.876	297.26	4.436	11892	50.3		
297.28	0.141	0.661	4.003	297.28	4.805	12057	50.3		
297.30	0.142	0.942	4.131	297.30	5.215	12222	50.3		
297.32	0.143	1.264	4.261	297.32	5.667	12389	50.3		
297.34	0.144	1.623	4.392	297.34	6.159	12556	50.3		
297.36	0.144	2.022	4.524	297.36	6.690	12723	50.3		
297.38	0.145	2.458	4.658	297.38	7.261	12891	50.3		
297.40	0.146	2.932	4.793	297.40	7.871	13060	50.3		
297.42	0.147	3.444	4.929	297.42	8.520	13230	50.3		
297.44	0.148	3.994	5.067	297.44	9.209	13400	50.3		
297.46	0.148	4.583	5.206	297.46	9.937	13570	50.3		
297.48	0.149	5.210	5.346	297.48	10.705	13742	50.3		
297.50	0.150	5.718	5.487	297.50	11.355	13913	50.4		

FOREBAY SIZING CALCULATIONS

7370 Centre Road Project Number: 2099 Date: December 2020

Designer Initials: C.M.D.

Forebay

Elevation (m)	Area (m²)	Average Area (m²)	Height (m)	Volume (m³)	Cumulative Volume (m³)	Depth (m)
294.00	366				0	0
295.00	832	599	1	599	599	1
295.50	1261	1047	0.5	523	1,122	1.5

Total Permanent Pool

Area (m²)	Average Area (m²)	Height (m)	Volume (m³)	Cumulative Volume (m³)	Depth (m)
2438				0	0
3799		-	•	3,119	1
4967	4383	0.5	2,192	5,310	1.5
	(m²) 2438 3799	Area (m²) Area (m²) 2438 3119 3799 4383	Area (m²)	Area (m²) Area (m²) Height (m) Volume (m³) 2438 3119 1 3,119 3799 4383 0.5 2,192	Area (m²) Area (m²) Height (m) Volume (m³) Volume (m³) 2438 3119 1 3,119 3799 4383 0.5 2,192

Minimum Criteria (per MECP guidelines)

Forebay area is 25 % of total Permanent Pool area Maximum Forebay area is 33 % of total Permanent Pool area

Therefore the minimum criteria per MECP guidelines is satisfied.

FOREBAY SIZING CALCULATIONS

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

2. Forebay Settling Length

Dist = $(r \times Q_0 / V_s)^{0.5}$ where: Dist = forebay length (m)

r = length to width ratio

Dist = $(2.56 * 0.09 / 0.0003)^0.5$ = 2.56

> Qp = peak flow rate from pond during design quality storm (m³/s)

(total flow from SWM Pond at extended detention elevation)

Dist = 28.3 = 0.094

 V_s = settling velocity (m/s)*

28.3 Minimum forebay length is (m) Actual forebay length is (m) 62.8

CRITERIA SATISFIED

3. Forebay Dispersion Length

Dist = $(8 \times Q) / (d \times V_f)$ where: Dist = forebay length (m)

Q = inlet flow rate (m³/s) (full flow capacity of a 1500mm dia. pipe)

= 0.0003

Dist = (8 * 4.996) / (1.5 * 0.5)

d = depth of permanent pool in forebay (m) Dist = 53.3

= 1.5

V_f = desired velocity in forebay (m/s)* 53.3 0.5

Minimum forebay length is (m) 62.8 Actual forebay length is (m)

CRITERIA SATISFIED

4. Minimum Forebay Bottom Width

Width = Dist / 8 where: Width = minimum forebay bottom width (m)

Dist = minimum forebay length (m)

Width = 53.3 / 8= 53.3

Width = 6.7

Minimum bottom width is (m) 6.7 Actual bottom width is (m) 11.1

CRITERIA SATISFIED

5. Maximum Velocity Check

V = Q/Awhere: V = velocity (m/s)

Q = inlet flow rate (m³/s) (full flow capacity of a 1500mm dia. pipe)

V = 4.996 / 38

A = average cross-sectional area of entire forebay (m²) V = 0.12

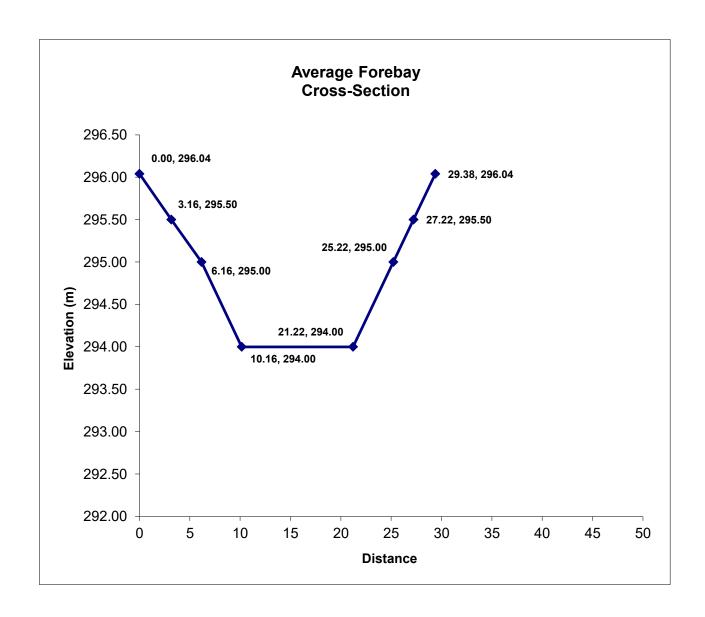
(see Page 3)

= 40.3

Maximum velocity permitted is (m/s) 0.15 Actual velocity is (m/s) 0.12

CRITERIA SATISFIED

*Value recommended by the MECP Stormwater Management Planning & Design Manual



FOREBAY SIZING CALCULATIONS

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Distance (m)	Elevation (m)	Depth (m)	Incremental Area (m²)
0.00	296.04	0.00	
3.16	295.50	0.54	0.85
6.16	295.00	1.04	2.37
10.16	294.00	2.04	6.16
21.22	294.00	2.04	22.56
25.22	295.00	1.04	6.16
27.22	295.50	0.54	1.58
29.38	296.04	0.00	0.58

Area $(m^2) = 40.27$

CATCHMENT 204 REQUIRED QUALITY CONTROL VOLUME

7370 Centre Road Project Number: 2099 Date: February 2021 Designer Initials: E.S.D.

Level of Protection = Enhanced (Level 1)

Weighted Impervious = 62 %

Drainage Area (Catchment 201 Only) = 5.61 ha

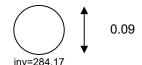
SWMP Type = 1. Infiltration

Required Infiltration/Filtration Volume = 32.3 m³/ha

Required Infiltration/Filtration Volume = 181.4 m³

TABLE 3.2 - WATER QUALITY STORAGE REQUIREMENTS (FROM MOE SWM PLANNING AND DESIGN MANUAL - 2003)

Protection Level	SWMP Type	Storage Volume (m³/ha) for Impervious Level			
		35%	55%	70%	85%
Enhanced (Level 1)	1. Infiltration	25	30	35	40
	2. Wetlands	80	105	120	140
	3. Hybrid Wet Pond/Wetland	110	150	175	195
	4. Wet Pond	140	190	225	250
Normal (Level 2)	1. Infiltration	20	20	25	30
	2. Wetlands	60	70	80	90
	3. Hybrid Wet Pond/Wetland	75	90	105	120
	4. Wet Pond	90	110	130	150
Basic (Level 3)	1. Infiltration	20	20	20	20
	2. Wetlands	60	60	60	60
	3. Hybrid Wet Pond/Wetland	60	70	75	80
	4. Wet Pond	60	75	85	95
	5. Dry Pond (Continuous Flow)	90	150	200	240



CONTROL STRUCTURE SUMMARY DRY SWM POND 1

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Orifice 1

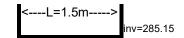
Invert = 284.17 m Size = 0.090 m Orifice Coefficient, C = 0.62 Obvert = 284.26 m

Broad Crested Weir (Emergency Spillway)

Length = 15.0 m

Elevation = 286.30 m

Crest Breadth = 2 m


Side Slope = 20

(0 = vertical, 1 = 1H to 1V, 3 = 3H to 1 v)

Broad Crested Weir (Weir 1)

Length = 1.5 m
Elevation = 285.15 m
Crest Breadth = 0.2 m

OUTFLOW SUMMARY DRY SWM POND 1

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Starting Water Level (m) = 284.17 Elevation Increment (m) = 0.02

Shading represents Storage-Discharge pairings used in VO modelling

Upstream	Orifice 1	Emergency Spillway	Weir 1	Stage	Total	Storage	Detention	4 Hour Chicago	12 Hour SCS
Elevation	Outflow	Outflow	Outflow		Flow	/ 3\	Time	Storm	Storm
(m)	(cms)	(cms)	(cms)	(m)	(cms)	(m³)	(hrs)	0.15	
284.17 284.19	0.000	0.000 0.000	0.000	284.17 284.19	0.000	0	0.0	Orific	e 1
284.21	0.000	0.000	0.000	284.21	0.000	0	0.0		
284.23	0.001	0.000	0.000	284.23	0.001	0	0.0		
284.25	0.003	0.000	0.000	284.25	0.003	0	0.0		
284.27	0.004	0.000	0.000	284.27	0.004	0	0.0		
284.29	0.005	0.000	0.000	284.29	0.005	2	0.1		
284.31	0.005	0.000	0.000	284.31	0.005	4	0.3		
284.33	0.006	0.000	0.000	284.33	0.006	9	0.5		
284.35	0.006	0.000	0.000	284.35	0.006	17	0.9		
284.37 284.39	0.007 0.007	0.000 0.000	0.000	284.37 284.39	0.007 0.007	28 42	1.3 1.8		
284.41	0.007	0.000	0.000	284.41	0.007	58	2.5		
284.43	0.008	0.000	0.000	284.43	0.008	77	3.1		
284.45	0.008	0.000	0.000	284.45	0.008	99	3.8		
284.47	0.009	0.000	0.000	284.47	0.009	123	4.6		
284.49	0.009	0.000	0.000	284.49	0.009	149	5.4		
284.51	0.009	0.000	0.000	284.51	0.009	177	6.2		
284.53	0.010	0.000	0.000	284.53	0.010	205	7.1		
284.55	0.010	0.000	0.000	284.55	0.010	234	7.9		
284.57	0.010	0.000	0.000	284.57	0.010	264	8.7		
284.59	0.011	0.000	0.000	284.59	0.011	293	9.5		
284.61	0.011	0.000	0.000	284.61 284.63	0.011 0.011	323	10.2		
284.63 284.65	0.011 0.012	0.000 0.000	0.000 0.000	284.65	0.011	353 384	11.0 11.7		
284.67	0.012	0.000	0.000	284.67	0.012	414	12.4		
284.69	0.012	0.000	0.000	284.69	0.012	445	13.2		
284.71	0.012	0.000	0.000	284.71	0.012	477	13.9		
284.73	0.013	0.000	0.000	284.73	0.013	508	14.6		
284.75	0.013	0.000	0.000	284.75	0.013	540	15.3		
284.77	0.013	0.000	0.000	284.77	0.013	573	16.0		
284.79	0.013	0.000	0.000	284.79	0.013	605	16.7		
284.81	0.013	0.000	0.000	284.81	0.013	638	17.4		
284.83	0.014	0.000	0.000	284.83	0.014	671	18.0		
284.85	0.014	0.000	0.000	284.85	0.014	704	18.7		
284.87	0.014	0.000	0.000	284.87	0.014	738	19.4		
284.89 284.91	0.014 0.015	0.000 0.000	0.000 0.000	284.89 284.91	0.014 0.015	772 806	20.0 20.7		
284.93	0.015	0.000	0.000	284.93	0.015	841	21.3		
284.95	0.015	0.000	0.000	284.95	0.015	875	22.0		
284.97	0.015	0.000	0.000	284.97	0.015	911	22.6	2 Year	
284.99	0.015	0.000	0.000	284.99	0.015	946	23.3		
285.01	0.016	0.000	0.000	285.01	0.016	982	23.9		
285.03	0.016	0.000	0.000	285.03	0.016	1018	24.6		
285.05	0.016	0.000	0.000	285.05	0.016	1054	25.2		
285.07	0.016	0.000	0.000	285.07	0.016	1090	25.8		2 Year
285.09	0.016	0.000	0.000	285.09	0.016	1127	26.5) - 44i
285.11	0.017	0.000	0.000 0.000	285.11 285.13	0.017 0.017	1164	27.1	Extended [Detention
285.13 285.15	0.017 0.017	0.000 0.000	0.000	285.13	0.017	1202 1240	27.7 28.3	Wei	r 1
285.17	0.017	0.000	0.007	285.17	0.017	1278	28.9	VVEI	
285.19	0.017	0.000	0.019	285.19	0.024	1316	29.2	5 Year	
285.21	0.017	0.000	0.034	285.21	0.052	1355	29.5	2 . 5	
285.23	0.018	0.000	0.053	285.23	0.070	1393	29.6		
285.25	0.018	0.000	0.074	285.25	0.091	1433	29.8	10 Year	5 Year
285.27	0.018	0.000	0.097	285.27	0.115	1472	29.9		
285.29	0.018	0.000	0.122	285.29	0.140	1512	30.0		
285.31	0.018	0.000	0.149	285.31	0.167	1552	30.0	05.)	
285.33	0.018	0.000	0.178	285.33	0.196	1592	30.1	25 Year	40.14
285.35 285.37	0.019 0.019	0.000 0.000	0.215 0.248	285.35 285.37	0.233 0.266	1633 1674	30.2 30.2		10 Year
285.37 285.39	0.019	0.000	0.248	285.37	0.266	1674	30.2		
285.41	0.019	0.000	0.202	285.41	0.337	1713	30.2		
285.43	0.019	0.000	0.356	285.43	0.375	1798	30.3		25 Year
285.45	0.019	0.000	0.426	285.45	0.446	1841	30.3		
285.47	0.020	0.000	0.470	285.47	0.489	1883	30.4		
285.49	0.020	0.000	0.514	285.49	0.534	1926	30.4	100 Year	
285.51	0.020	0.000	0.561	285.51	0.580	1969	30.4		
285.53	0.020	0.000	0.608	285.53	0.628	2012	30.4		

OUTFLOW SUMMARY DRY SWM POND 1

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Starting Water Level (m) = 284.17 Elevation Increment (m) = 0.02

Shading represents Storage-Discharge pairings used in VO modelling

	0.5.4	F	147.1.4	01	T. (- 1	01	I 5.4		
Upstream Elevation	Orifice 1 Outflow	Emergency Spillway Outflow	Weir 1 Outflow	Stage	Total Flow	Storage	Detention Time	4 Hour Chicago	12 Hour SCS
(m)	(cms)	(cms)	(cms)	(m)	(cms)	(m ³)	(hrs)	Storm	Storm
285.55	0.020	0.000	0.683	285.55	0.703	2055	30.4	Orific	e 1
285.57	0.020	0.000	0.735	285.57	0.755	2099	30.5		
285.59	0.020	0.000	0.788	285.59	0.809	2143	30.5		100 Year
285.61	0.021	0.000	0.842	285.61	0.863	2188	30.5		
285.63	0.021	0.000	0.898	285.63	0.919	2232	30.5		
285.65	0.021	0.000	0.965	285.65	0.986	2278	30.5		
285.67	0.021	0.000	1.024	285.67	1.045	2323	30.5		
285.69	0.021	0.000	1.083	285.69	1.105	2368	30.5		
285.71	0.021	0.000	1.144	285.71	1.165	2414	30.6		
285.73	0.022	0.000	1.206	285.73	1.227	2460	30.6		
285.75	0.022	0.000	1.276	285.75	1.297	2507	30.6		
285.77	0.022	0.000	1.340	285.77	1.362	2554	30.6		
285.79	0.022	0.000	1.405	285.79	1.427	2601	30.6		
285.81	0.022	0.000	1.472	285.81	1.494	2648	30.6		
285.83	0.022	0.000	1.539	285.83	1.561	2696	30.6		
285.85	0.022	0.000	1.608	285.85	1.630	2744	30.6		
285.87	0.022	0.000	1.677	285.87	1.700	2792	30.6		
285.89	0.023	0.000	1.747	285.89	1.770	2840	30.6		
285.91	0.023	0.000	1.819	285.91	1.841	2889	30.6		
285.93	0.023	0.000	1.891	285.93	1.914	2938	30.7		
285.95	0.023	0.000	1.964	285.95	1.987	2988	30.7		
285.97	0.023	0.000	2.038	285.97	2.061	3037	30.7		
285.99	0.023	0.000	2.113	285.99	2.137	3087	30.7		
286.01	0.023	0.000	2.189	286.01	2.213	3137	30.7		
286.03	0.024	0.000	2.266	286.03	2.290	3188	30.7		
286.05	0.024	0.000	2.344	286.05	2.367	3239	30.7		
286.07	0.024	0.000	2.422	286.07	2.446	3290	30.7		
286.09	0.024	0.000	2.502	286.09	2.526	3341	30.7		
286.11	0.024	0.000	2.582	286.11	2.606	3393	30.7		
286.13	0.024	0.000	2.663	286.13	2.687	3445	30.7		
286.15	0.024	0.000	2.745	286.15	2.769	3497	30.7		
286.17	0.024	0.000	2.828	286.17	2.852	3550	30.7		
286.19	0.025	0.000	2.911	286.19	2.936	3603	30.7		
286.21	0.025	0.000	2.996	286.21	3.020	3656	30.7		
286.23	0.025	0.000	3.081	286.23	3.106	3709	30.7		
286.25	0.025	0.000	3.167	286.25	3.192	3763	30.7		
286.27	0.025	0.000	3.254	286.27	3.279	3817	30.7		
286.29	0.025	0.000	3.341	286.29	3.366	3871	30.8		
286.31	0.025	0.021	3.429	286.31	3.476	3926	30.8	Emergency Spillwa	y Invert (286.30)
286.33	0.025	0.112	3.519	286.33	3.656	3981	30.8	• • •	, ,
286.35	0.026	0.247	3.608	286.35	3.881	4037	30.8		
286.37	0.026	0.419	3.699	286.37	4.144	4093	30.8		
286.39	0.026	0.626	3.790	286.39	4.442	4149	30.8		
286.41	0.026	0.866	3.882	286.41	4.774	4205	30.8		
286.43	0.026	1.138	3.975	286.43	5.140	4262	30.8		
286.45	0.026	1.443	4.069	286.45	5.538	4319	30.8		
286.47	0.026	1.780	4.163	286.47	5.969	4377	30.8	100 Year Un	controlled
286.49	0.026	2.149	4.258	286.49	6.433	4435	30.8		
286.51	0.026	2.753	4.354	286.51	7.133	4493	30.8		
286.53	0.027	3.221	4.450	286.53	7.698	4552	30.8		
286.55	0.027	3.725	4.547	286.55	8.299	4611	30.8		
286.57	0.027	4.264	4.645	286.57	8.936	4670	30.8		
286.59	0.027	4.840	4.743	286.59	9.610	4730	30.8		
286.61	0.027	5.416	4.843	286.61	10.285	4790	30.8		
286.63	0.027	6.060	4.942	286.63	11.030	4850	30.8		
286.65	0.027	6.742	5.043	286.65	11.812	4911	30.8		
286.67	0.027	7.461	5.144	286.67	12.633	4972	30.8		
286.69	0.027	8.219	5.246	286.69	13.492	5034	30.8		
286.71	0.028	8.892	5.348	286.71	14.268	5096	30.8		
286.73	0.028	9.716	5.452	286.73	15.195	5158	30.8		
286.75	0.028	10.577	5.555	286.75	16.161	5220	30.8		

5-Year Storm Design 7370 Centre Road, Uxbridge Phase 1 & 2 Uxbridge

Rainfall Intensity (i) = A $(T_c+B)^c$

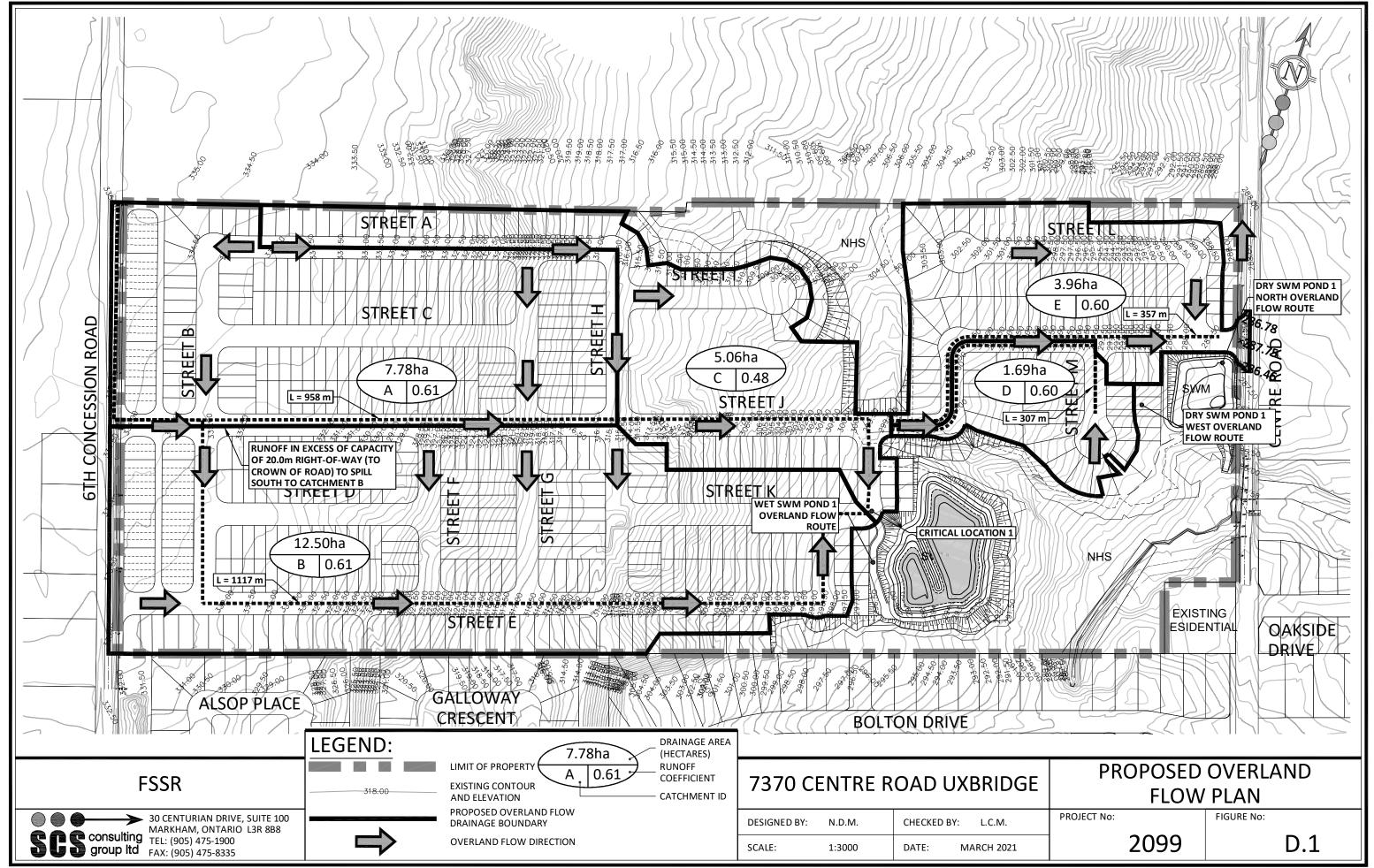
A= 904 B= 5

c = 0.788

Starting T_c (min)= 10

Project: 7370 Centre Road, Uxbridge

Project No. 2099


Date: 26-Feb-21

Designed By: C.M.D.

Reviewed By: N.D.M.

P:\2099 7370 Centre Road Uxbridge\Design\Pipe Design\Storm\[2099 - Storm Design Sheet.xlsm]Design

LOCATION					5 Y	EAR				EXTERNA	L FLOWS		TOTAL FLOW			PIPE DATA				
	MAINTENA	ANCE HOLE	5-YEAR	RUNOFF	"AR"	ACCUM.	RAINFALL	ACCUM.	AREA	FLOW RATE	EXT FLOW	ACCUM. EXT.		LENGTH	SLOPE		FULL FLOW			ACCUM. TIME
STREET	FROM	то	AREA	COEFF.	AK	"AR"	INTENSITY	FLOW	AKEA	FEOW RATE	EXT.FEOW	FLOW	(Qdes)	LENGIN	SEOLE	DIAMETER	CAPACITY	VELOCITY	CONC.	OF CONC.
			(ha)	(R)			(mm/hr)	(m3/s)	(ha)	(l/s/ha)	(m3/s)	(m3/s)	(m3/s)	(m)	(%)	(mm)	(m3/s)	(m/s)	(min)	(min)
To Wet SWM Pond	1	2	25.52	0.60	15.31	15.31	76.45	3.252	0.000	0.000	0.000	0.000	3.252	958.0	0.50	1350	3.772	2.637	6.06	24.04
To Dry SWM Pond	3	4	5.61	0.60	3.37	3.37	92.79	0.868	0.000	0.000	0.000	0.000	0.868	357.0	0.50	825	1.014	1.899	3.13	16.11

Right-Of-Way Capacity Calculations 20.0m R.O.W. - Catchments A and B

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: N.D.M.

Township of Uxbridge 5 Year				
(Rational Method)				
Area (ha) =	20.28			
5 Year Runoff Coeff. =	0.61			
T_{c} (min) =	19.31			
a=	904			
a= b=	904 5			
b=	5			

(Assumes initial Tc of 10 minutes and 1117m flowing at 2 m/s)

Catchment A and Catchment B							
Land Use	Area (ha)	Runoff Coefficient	Weighted Runoff Coefficient				
Single Detached Lots	18.76	0.60	0.56				
Laneway Townhomes	1.52	0.75	0.06				
	20.28		0.61				

(Refer to Figure D.1)

Township of Uxbridge 100 Year				
(Rational Method)				
Area (ha) =	20.28			
100 Year Return Period Factor =	1.25			
100 Year Runoff Coeff. =	0.76			
T_{c} (min) =	19.31			
a=	1799			
b=	5			
c=	0.810			
Intensity (mm/hr) =	135.70			
Runoff $(m^3/s)=$	5.841			

Major System Peak Flow (Catchment B):

$$Q_{Peak} = Q_{100vr} - Q_{5vr} = 3.322 \text{ m}^3/\text{s}$$

Runoff from Catchment A in excess of the capacity of a half 20.0m R.O.W. section up to the crown will spill into Catchment B. The flow capacity has been calculated below (Q_{crown}) .

Half of 20.0m R.O.W. @ 5.0% Flow Capacity

$$Q_{crown} = 0.388 \text{ m}^3/\text{s}$$

Required Flow Capacity at Critical Location 1:

$$Q_{\text{Peak}} - Q_{\text{crown}} = 2.934 \text{ m}^3/\text{s}$$

Major system capacity in 20.0 m R.O.W. at 1.0% road slope with 5.0% boulevards = 3.128m 3 /s. Therefore, the major system flows will be conveyed within the 20.0 m R.O.W.

Right-Of-Way Capacity Calculations 20.0m R.O.W. - Catchment C

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: N.D.M.

Township of Uxbridge 5 Yo (Rational Method)	ear
Area (ha) =	5.06
5 Year Runoff Coeff. =	0.48
T_{c} (min) =	17.98
a=	904
b=	5
c=	0.788
Intensity (mm/hr) =	76.45
Runoff $(m^3/s)=$	0.518

(Assumes initial Tc of 10 minutes and 958m flowing at 2 m/s)

Catchment C						
Land Use	Area (ha)	Runoff Coefficient	Weighted Runoff Coefficient			
Single Detached Lots	3.35	0.60	0.40			
Park	1.71	0.25	0.08			
	5.06		0.48			

(Refer to Figure D.1)

Township of Uxbridge 100 Year				
(Rational Method)				
Area (ha) =	5.06			
100 Year Return Period Factor =	1.25			
100 Year Runoff Coeff. =	0.60			
T_{c} (min) =	17.98			
a=	1799			
b=	5			
c=	0.810			
Intensity (mm/hr) =	142.00			
Runoff $(m^3/s)=$	1.202			

Major System Peak Flow (Catchment C):

$$Q_{Peak} = Q_{100yr} - Q_{5yr} = 0.684 \text{ m}^3/\text{s}$$

Runoff from Catchment A in excess of the capacity of a half 20.0m R.O.W. section up to the crown will spill into Catchment B. The flow capacity has been calculated below (Q_{crown}).

$$Q_{crown} = 0.388 \text{ m}^3/\text{s}$$

Required Flow Capacity at Critical Location 1:

$$Q_{\text{peak+}} Q_{\text{crown}} = 1.072 \text{ m}^3/\text{s}$$

Major system capacity in 20.0 m R.O.W. at 0.5% road slope = 2.043m 3 /s. Therefore, the major system flows will be conveyed within the 20.0 m R.O.W.

Right-Of-Way Capacity and West Overland Flow Route Calculations - Catchment D

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: N.D.M.

Township of Uxbridge 5 Year					
(Rational Method)					
Area (ha) =	1.69				
5 Year Runoff Coeff. =	0.60				
T_{c} (min) =	12.56				
a=	904				
a= b=	904 5				
-	_				
b=	5				

(Assumes initial Tc of 10 minutes and 307m flowing at 2 m/s) (Refer to **Figure D.1**)

Catchment D							
Land Use	Area (ha)	Runoff Coefficient	Weighted Runoff Coefficient				
Single Detached Lots	1.69	0.60	0.60				
	1.69		0.60				

Township of Uxbridge 100 Year					
(Rational Method)					
Area (ha) =	1.69				
100 Year Return Period Factor =	1.25				
100 Year Runoff Coeff. =	0.75				
T_{c} (min) =	12.56				
a=	1799				
b=	5				
c=	0.810				
Intensity (mm/hr) =	176.60				
Runoff $(m^3/s)=$	0.622				

Major System Peak Flow (Catchment D): $Q_{100yr} - Q_{5yr} = 0.356 \text{ m}^3/\text{s}$

Major system capacity in 20.0 m R.O.W. at 0.5% road slope = $2.043\text{m}^3/\text{s}$. Therefore, the major system flows will be conveyed within the 20.0 m R.O.W. The west overland flow route into Dry SWM Pond 1 will convey the major system peak flow of $0.356\text{m}^3/\text{s}$.

Right-Of-Way Capacity and North Overland Flow Route Calculations - Catchment E

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: N.D.M.

Township of Uxbridge 5 Yo (Rational Method)	ear
Area (ha) =	3.96
5 Year Runoff Coeff. =	0.60
T_{c} (min) =	12.98
a=	904
a= b=	904 5
-	_
b=	5

(Assumes initial Tc of 10 minutes and 357m flowing at 2 m/s) (Refer to **Figure D.1**)

	Catchn	nent E	
Land Use	Area (ha)	Runoff Coefficient	Weighted Runoff Coefficient
Single Detached Lots	3.96	0.60	0.60
	3.96		0.60

Township of Uxbridge 100 Y	/ear
(Rational Method)	
Area (ha) =	3.96
100 Year Return Period Factor =	1.25
100 Year Runoff Coeff. =	0.75
T_{c} (min) =	12.98
a=	1799
b=	5
c=	0.810
Intensity (mm/hr) =	173.28
Runoff $(m^3/s)=$	1.430

Major System Peak Flow (Catchment E): $Q_{100yr} - Q_{5yr} =$ $0.817 \text{ m}^3/\text{s}$

Major system capacity in 20.0 m R.O.W. at 0.5% road slope = 2.043m³/s. Therefore, the major system flows will be conveyed within the 20.0 m R.O.W.

The north overland flow route into Dry SWM Pond 1 will convey the major system peak flow of 0.817m³/s.

20.0m R.O.W. @ 0.5%

Project Description

Friction Method Manning Formula Solve For Discharge

Input Data

Channel Slope 0.50 % Normal Depth 0.26 m

Section Definitions

Station (m)	Elevation (m)
0+00.000	0.000
0+05.550	-0.111
0+05.700	-0.111
0+05.750	-0.261
0+06.050	-0.236
0+10.000	-0.157
0+13.950	-0.236
0+14.250	-0.261
0+14.300	-0.111
0+14.450	-0.111
0+18.200	-0.036
0+19.700	-0.006
0+20.000	0.000

Roughness Segment Definitions

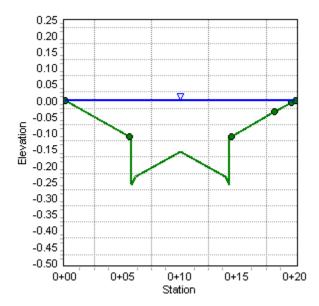
Start Station	Ending Station	Roughness Coefficient
(0.00.000.000)	(0.05 550 0.444)	0.005
(0+00.000, 0.000)	(0+05.550, -0.111)	0.025
(0+05.550, -0.111)	(0+14.450, -0.111)	0.013
(0+14.450, -0.111)	(0+18.200, -0.036)	0.025
(0+18.200, -0.036)	(0+19.700, -0.006)	0.013
(0+19.700, -0.006)	(0+20.000, 0.000)	0.025
-		
Results		
Discharge	2.043 m³/s	

20.0m R.O.W. @ 0.5%

Results			
Elevation Range	-0.261 to 0.000 m		
Flow Area	2.37	m²	
Wetted Perimeter	20.222	m	
Top Width	20.000	m	
Normal Depth	0.26	m	
Critical Depth	0.24	m	
Critical Slope	0.00802	m/m	
Velocity	0.86	m/s	
Velocity Head	0.04	m	
Specific Energy	0.30	m	
Froude Number	0.80		
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth	0.00	m	
Length	0.000	m	
Number Of Steps	0		
GVF Output Data			
Upstream Depth	0.00	m	
Profile Description			
Profile Headloss	0.00	m	
Downstream Velocity	Infinity	m/s	
Upstream Velocity	Infinity	m/s	
Normal Depth	0.26	m	
Critical Depth	0.24	m	
Channel Slope	0.00500	m/m	
Critical Slope	0.00802	m/m	

Page 2 of 2

20.0m R.O.W. @ 0.5%


Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 $\begin{array}{ccc} \text{Channel Slope} & 0.50 & \% \\ \text{Normal Depth} & 0.26 & m \\ \text{Discharge} & 2.043 & m^3/\text{s} \\ \end{array}$

Cross Section Image

20.0m R.O.W. 5% Boulevard @ 1.0%

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

Channel Slope 1.00 % Normal Depth 0.26 m

Section Definitions

Station (m)	Elevation (m)
0+00.000	0.167
0+05.550	-0.111
0+05.700	-0.111
0+05.750	-0.261
0+06.050	-0.236
0+10.000	-0.157
0+13.950	-0.236
0+14.250	-0.261
0+14.300	-0.111
0+14.450	-0.111
0+18.200	0.077
0+19.700	0.152
0+20.000	0.167

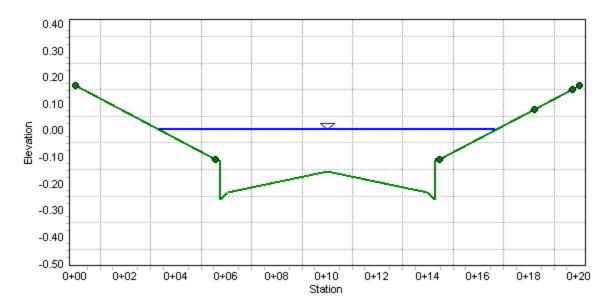
Roughness Segment Definitions

	Start Station	Ending Station	Roughness Coefficient
	(0+00.000, 0.167)	(0+05.550, -0.111)	0.025
	(0+05.550, -0.111)	(0+14.450, -0.111)	0.013
	(0+14.450, -0.111)	(0+18.200, 0.077)	0.025
	(0+18.200, 0.077)	(0+19.700, 0.152)	0.013
	(0+19.700, 0.152)	(0+20.000, 0.167)	0.025
Results			
Discharge		3.128 m³/s	

20.0m R.O.W. 5% Boulevard @ 1.0%

Results
Elevation Range -0.261 to 0.167 m
Flow Area 2.00 m ²
Wetted Perimeter 13.556 m
Top Width 13.330 m
Normal Depth 0.26 m
Critical Depth 0.29 m
Critical Slope 0.00578 m/m
Velocity 1.56 m/s
Velocity Head 0.12 m
Specific Energy 0.39 m
Froude Number 1.29
Flow Type Supercritical
GVF Input Data
Downstream Depth 0.00 m
Length 0.000 m
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 m
Profile Description
Profile Headloss 0.00 m
Downstream Velocity Infinity m/s
Upstream Velocity Infinity m/s
Normal Depth 0.26 m
Critical Depth 0.29 m
Ontiour Deptir
Channel Slope 0.01000 m/m

20.0m R.O.W. 5% Boulevard @ 1.0% Cross Section


Project Description

Friction Method Manning Formula

Solve For Discharge

Input Data

Cross Section Image

20.0m R.O.W. @ 5.0%(Max Velocity)

Project Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Channel Slope 5.00 % Discharge 2.934 m^3/s

Section Definitions

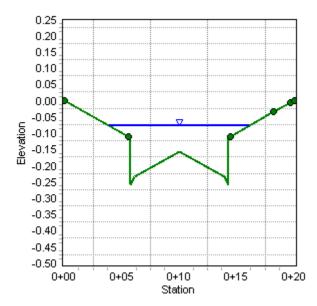
Station (m)	Elevation (m)
0+00.000	0.000
0+05.550	-0.111
0+05.700	-0.111
0+05.750	-0.261
0+06.050	-0.236
0+10.000	-0.157
0+13.950	-0.236
0+14.250	-0.261
0+14.300	-0.111
0+14.450	-0.111
0+18.200	-0.036
0+19.700	-0.006
0+20.000	0.000

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(0+00.000, 0.000)	(0+05.550, -0.111)	0.025
(0+05.550, -0.111)	(0+14.450, -0.111)	0.013
(0+14.450, -0.111)	(0+18.200, -0.036)	0.025
(0+18.200, -0.036)	(0+19.700, -0.006)	0.013
(0+19.700, -0.006)	(0+20.000, 0.000)	0.025
Results		
Normal Depth	0.18 m	

20.0m R.O.W. @ 5.0%(Max Velocity)

Results				ĺ
L Coulto				
Elevation Range	-0.261 to 0.000 m			
Flow Area		1.12	m²	
Wetted Perimeter		12.439	m	
Top Width		12.218	m	
Normal Depth		0.18	m	
Critical Depth		0.27	m	
Critical Slope		0.00572	m/m	
Velocity		2.63	m/s	
Velocity Head		0.35	m	
Specific Energy		0.54	m	
Froude Number		2.78		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	m	
Length		0.000	m	
Number Of Steps		0		
GVF Output Data				
		0.00	m	
Upstream Depth Profile Description		0.00	m	
•		0.00		
Profile Headloss		0.00	m m/s	
Downstream Velocity		Infinity	m/s	
Upstream Velocity		Infinity	m/s	
Normal Depth		0.18	m	
Critical Depth		0.27	m /	
Channel Slope		0.05000	m/m	
Critical Slope		0.00572	m/m	


20.0m R.O.W. @ 5.0%(Max Velocity)

Project Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Cross Section Image

Project Description

Friction Method Manning Formula Solve For Discharge

Input Data

Channel Slope 5.00 % Normal Depth 0.10 m

Section Definitions

Station (m)	Elevation (m)
0+00.000	0.000
0+00.300	-0.006
0+01.800	-0.036
0+05.550	-0.111
0+05.700	-0.111
0+05.750	-0.261
0+06.050	-0.236
0+10.000	-0.157

Roughness Segment Definitions

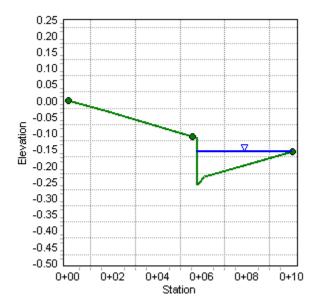
Start :	Station	Ending Station		Roughness Coefficient	
	(0+00.000, 0.000)	(0+05.550), -0.111)		0.025
	(0+05.550, -0.111)	(0+10.000			0.013
Results					
Discharge		0.388	m³/s		
Elevation Range	-0.261 to 0.000 r	m			
Flow Area		0.19	m²		
Wetted Perimeter		4.361	m		
Top Width		4.285	m		
Normal Depth		0.10	m		
Critical Depth		0.16	m		
Critical Slope		0.00392	m/m		
Velocity		2.09	m/s		

Half of 20.0m R.O.W. @ 5.0%				
Results				
Velocity Head		0.22	m	
Specific Energy		0.33	m	
Froude Number		3.22		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	m	
Length		0.000	m	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	m	
Profile Description				
Profile Headloss		0.00	m	
Downstream Velocity		Infinity	m/s	
Upstream Velocity		Infinity	m/s	
Normal Depth		0.10	m	
Critical Depth		0.16	m	
Channel Slope		0.05000	m/m	

0.00392 m/m

Critical Slope

Half of 20.0m R.O.W. @ 5.0%


Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 $\begin{array}{ccc} \text{Channel Slope} & 5.00 & \% \\ \text{Normal Depth} & 0.10 & m \\ \text{Discharge} & 0.388 & m^3 \text{/s} \\ \end{array}$

Cross Section Image

Culvert Calculator Report By-Pass Sewer Sizing

Solve For: Headwater Elevation

Culvert Summary				
Allowable HW Elevation 301.	54 m	Headwater Depth/Height	2.38	
Computed Headwater Elevation 300.	72 m	Discharge	0.9340	m3/ s €
Inlet Control HW Elev. 300.	72 m	Tailwater Elevation	0.00	m
Outlet Control HW Elev. 300.	48 m	Control Type	Inlet Control	
Grades				
Upstream Invert 299.3	27 m	Downstream Invert	295.05	m
Length 109.	00 m	Constructed Slope	0.038716	m/m
Hydraulic Profile				
Profile	52	Depth, Downstream	0.37	m
Slope Type Stee	ер	Normal Depth	0.37	m
Flow Regime Supercritic	al	Critical Depth	0.58	m
Velocity Downstream 5.0	08 m/s	Critical Slope	0.015693	m/m
Section				
Section Shape Circul	ar	Mannings Coefficient	0.012	
Section Myderical HDPE (Smooth Interior	or)	Span	0.61	m
Section Size 600 m	ım	Rise	0.61	m
Number Sections	1			
Outlet Control Properties				
Outlet Control HW Elev. 300.4	48 m	Upstream Velocity Head	0.53	m
Ke 0.	20	Entrance Loss	0.11	m
Inlet Control Properties				
Inlet Control HW Elev. 300.	72 m	Flow Control	N/A	
Inlet Type Groove end projection	ng	Area Full	0.3	m2
K 0.004	50	HDS 5 Chart	1	
M 2.000	00	HDS 5 Scale	3	
C 0.031	70	Equation Form	1	
Y 0.690	00			

Catchment 202 -Regional Storm Peak Flow

By-Pass Storm Sewer Sizing Project Description Manning Formula Friction Method Solve For Normal Depth Input Data Roughness Coefficient 0.012 Catchment 202 -3.87 Channel Slope Regional Storm Diameter 0.600 m Peak Flow 0.934 Discharge m³/s Results Normal Depth 0.37 m Flow Area 0.19 m² Wetted Perimeter 1.09 m Top Width 0.58 m Critical Depth 0.57 m Percent Full 62.4 % Critical Slope 0.01714 m/m Velocity 5.03 m/s Velocity Head 1.29 m Specific Energy 1.66 m Froude Number 2.84 Maximum Discharge 1.41 m³/s Discharge Full 1.31 m³/s Slope Full 0.01972 m/m Flow Type SuperCritical **GVF Input Data**

Downstream Depth	0.00	m
Length	0.00	m
Number Of Steps	0	

GVF Output Data

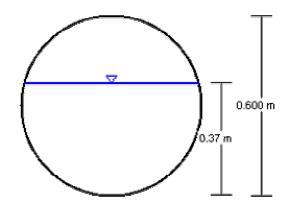
Upstream Depth	0.00	m
Profile Description		
Profile Headloss	0.00	m
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	62.45	%
Downstream Velocity	Infinity	m/s
Upstream Velocity	Infinity	m/s

By-Pass Storm Sewer Sizing

GVF Output Data

Normal Depth 0.37 m Critical Depth 0.57 m Channel Slope 3.87 % Critical Slope 0.01714 m/m

By-Pass Storm Sewer Sizing


Project Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.012	
Channel Slope	3.87	%
Normal Depth	0.37	m
Diameter	0.600	m
Discharge	0.934	m³/s

Cross Section Image

West Overland Flow Route Required Capacity Wet SWM Pond 1

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Township of Uxbridge 5 Year (Rational Method)		
Area (ha) =	25.34	
5 Year Runoff Coeff. =	0.59	
T_{c} (min) =	18.89	
a=	904	
b=	5	
c=	0.788	
Intensity (mm/hr) =	74.15	
Runoff $(m^3/s)=$	3.055	

(Assumes initial Tc of 10 minutes and 1117m flowing at 2 m/s)

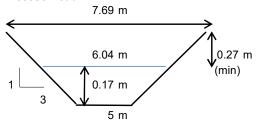
West Block				
Land Use	Area (ha)	Runoff Coefficient	Weighted Runoff Coefficient	
Single Detached Lots	22.11	0.60	0.52	
Park	1.71	0.25	0.02	
Laneway Townhomes	1.52	0.75	0.04	
	25.34		0.59	

Township of Uxbridge 100 Year (Rational Method)		
Area (ha) =	25.34	
5 Year Runoff Coeff. =	0.73	
$T_c (min) =$	18.89	
a=	1799	
b=	5	
c=	0.810	
Intensity (mm/hr) =	137.61	
Runoff (m^3/s) =	7.088	

Required Overland Flow Route Capacity =

 $4.032 \text{ m}^3/\text{s}$

West Overland Flow Route Sizing Calculations Wet SWM Pond 1


7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: C.M.D.

Required Capacity = 4.032 m³/s

per calculations in this Appendix

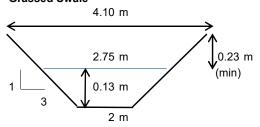
Mannings' Equation for a Trapezoidal Channel

Access Road

Area =	0.961 m ²
Wetted Perimeter =	6.100 m
Channel Capacity =	4.032 m ³ /s
Velocity =	4.20 m/s
Velocity X Depth =	$0.73 \text{ m}^2/\text{s}$

Slope = 3.5 %Manning's n = 0.013

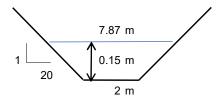
North Overland Flow Route Sizing Calculations DRY SWM POND 1


7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: E.S.D.

Required Capacity = 0.833 m³/s

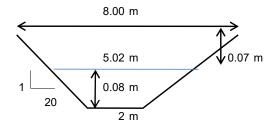
per calculations in this Appendix

Mannings' Equation for a Trapezoidal Channel


Grassed Swale

Area =	0.297 m^2
Wetted Perimeter =	2.791 m
Channel Capacity =	1.540 m ³ /s
Velocity =	5.19 m/s
Velocity X Depth =	$0.65 \text{ m}^2/\text{s}$

Slope = 33.33 % Manning's n = 0.025


Boulevard

Slope = 2%Manning's n = 0.025

Area =	0.723 m^2
Wetted Perimeter =	7.873 m
Channel Capacity =	0.833 m ³ /s
Velocity =	1.15 m/s
Velocity X Depth =	0.17 m ² /s

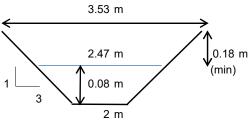
Sidewalk Spillway

Slope = 2 %Manning's n = 0.013

Area =	0.266 m ²
Wetted Perimeter =	5.028 m
Channel Capacity =	0.41 m ³ /s
Velocity =	1.53 m/s
Velocity X Depth =	0.12 m ² /s

Note: Velocity of flows in the overland flow route into the East Pond is greater than the maximum allowable flow over grass (1.5 m/s). Therefore, LP-P10 turf reinforcement matting is required.

West Overland Flow Route Sizing Calculations DRY SWM POND 1


7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: E.S.D.

Required Capacity = 0.356 m³/s

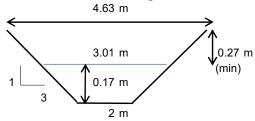
per calculations in this Appendix

Mannings' Equation for a Trapezoidal Channel


Grassed Swale in Pond Block

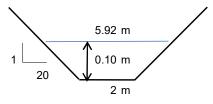
Area =	0.174 m ²
Wetted Perimeter =	2.492 m
Channel Capacity =	0.680 m³/s
Velocity =	3.91 m/s
Velocity X Depth =	0.30 m ² /s

Slope = 33.33 % Manning's n = 0.025


Access Road

Area =	0.119 m ²
Wetted Perimeter =	2.963 m
Channel Capacity =	0.151 m³/s
Velocity =	1.27 m/s
Velocity X Depth =	$0.06 \text{ m}^2/\text{s}$

Slope = 2%Manning's n = 0.013


Grassed Swale in Servicing Block

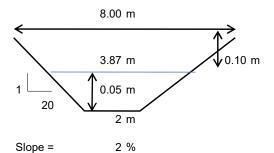
Area =	0.423 m ²
Wetted Perimeter =	3.068 m
Channel Capacity =	1.011 m ³ /s
Velocity =	2.39 m/s
Velocity X Depth =	0.40 m ² /s

Slope = 5%Manning's n = 0.025

Boulevard

Slope =	2	%
Manning's n =	0.025	

Area =	0.388 m ²
Wetted Perimeter =	5.924 m
Channel Capacity =	0.356 m³/s
Velocity =	0.92 m/s
Velocity X Depth =	$0.09 \text{ m}^2/\text{s}$



West Overland Flow Route Sizing Calculations DRY SWM POND 1

7370 Centre Road Project Number: 2099 Date: December 2020 Designer Initials: E.S.D.

Sidewalk Spillway

Manning's n = 0.013

Area =	0.137 m ²
Wetted Perimeter =	3.875 m
Channel Capacity =	0.16 m ³ /s
Velocity =	1.17 m/s
Velocity X Depth =	$0.05 \text{ m}^2/\text{s}$

Note: Velocity of flows in the overland flow route into the East Pond is greater than the maximum allowable flow over grass (1.5 m/s). Therefore, LP-P10 turf reinforcement matting is required.

APPENDIX E BMP SIZING AND PHOSPHORUS BUDGET CALCULATIONS

LID Sizing and Volume Control Calculations

7370 Centre Road Project Number: 2099 Date: February 2021 Designer Initials: E.S.D.

48 Hour Drawdown Calculation		
Hydraulic Conductivity (Per Terrapex Hydrogeological Assessment)	9.5x10 ⁻⁵	cm/s
I - Infiltration Rate (Per Table C1 of the TRCA and CVC LID SWM Planning and Design Guide, 2010)	49.0	mm/h
Design Infiltration Rate*	12.0	mm/h
n - Porosity	0.4	
t - Design Detention Time	48	h
SF - Safety Factor	2.5	
D - Maximum Depth of Infiltration Trench for 48 Hour Drawdown	0.6	m
Conservative estimate based on Silty Clay soils until in-situ testing performed at detailed design		

 $D = \frac{I * t}{SF * n * 1000}$

Catchment 201

Catchbasin Filtration Trench Parameters			
	Porosity Coefficient	0.4	
	Depth	1.00	m
	Width	1.00	m
	Length of Filtration Trench	1095.0	m
	Provided Stone Volume	1095.0	m ³
_	Provided Runoff Storage Volume	438.0	m ³

Catchbasin Infiltration Trench Parameters			
	Porosity Coefficient	0.4	
	Depth	0.60	m
	Width	1.00	m
	Length of Infiltration Trench	235.0	m
	Provided Stone Volume	141.0	m ³
	Provided Runoff Storage Volume	56.4	m ³
	A - Infiltration Trench Bottom area	235.00	m ²

Rear Yard At-Surface Infiltration Trenches		
Drainage Area		ha
Imperviousness (Per Figure C-1 in Appendix C)	47	%
Total Roof Area to Rear Yard Infiltration Trench	1.46	ha
Runoff Depth	25	mm
Required Runoff Storage Volume to Infiltrate Runoff Depth	364.3	m ³
Number of Lots with Rear Yard Infiltration Trenches	182	
Total Length of Infiltration Trenches	1890	m
Depth	0.6	m
Average Width	0.9	m
Porosity	0.4	
Preliminary Runoff Storage Volume Provided	385.6	m ³

Total Provided Infiltration/Filtration Volume =	858.7	m³
Catchmnent Area	25.52	ha
Imperviousness	59	%
Catchment Impervious Area	15.06	ha
Equivalent Depth of Rainfall Over Impervious Area (15.06 ha)	5.7	mm

Therefore, the proposed LIDs within Catchment 201 will provide an equivalent level of volume control for a rainfall depth of approximately 5.7 mm across the proposed impervious surfaces within Catchment 201.

Catchment 202

Rear Yard At-Surface Infiltration Trenches		
Lot Drainage Area	0.40	ha
Imperviousness (Per Figure C-1 in Appendix C)	47	%
Total Roof Area to Rear Yard Infiltration Trench	0.19	ha
Runoff Depth	25	mm
Required Runoff Storage Volume to Infiltrate Runoff Depth	47.0	m ³
Number of Lots with Rear Yard Infiltration Trenches	17	
Total Length of Infiltration Trenches	269	m
Depth	0.6	m
Average Width	0.75	m
Porosity	0.4	
Preliminary Runoff Storage Volume Provided	48.4	m ³

Therefore, the proposed LIDs within Catchment 202 will provide an equivalent level of volume control for a rainfall depth of 25 mm across the proposed impervious surfaces within Catchment 202.

LID Sizing and Volume Control Calculations

7370 Centre Road Project Number: 2099 Date: February 2021 Designer Initials: E.S.D.

Catchment 203

Rear Yard At-Surface Infiltration Trenches		
Lot Drainage Area	0.19	ha
Imperviousness (Per Figure C-1 in Appendix C)	47	%
Total Roof Area to Rear Yard Infiltration Trench	0.09	ha
Runoff Depth	25	mm
Required Runoff Storage Volume to Infiltrate Runoff Depth	22.3	m ³
Number of Lots with Rear Yard Infiltration Trenches	10	
Total Length of Infiltration Trenches	116	m
Depth	0.6	m
Average Width	0.85	m
Porosity	0.4	
Preliminary Runoff Storage Volume Provided	23.7	m ³

Therefore, the proposed LIDs within Rear Yard At-Surface Infiltration Trenches will provide an equivalent level of volume control for a rainfall depth of 25 mm across the proposed impervious surfaces within Rear Yard At-Surface Infiltration Trenches.

Catchment 204

Outoffficit 20-1		
Catchbasin Filtration Trench Parameters		
Porosity Coefficient	nt 0.4	
Dep	th 1.00	m
Wic	th 1.00	m
Length of Filtration Tren	ch 470.0	m
Provided Stone Volum	ne 470.0	m ³
Proposed Runoff Storage Volum	ne 188.0	m^3
Required Runoff Storage Volur	ne 181.4	m ³

Therefore, the proposed LIDs within Catchment 204 will provide a quality control volume of 188 cu.m., greater than 181.4 cu.m. required for quality control.

Rear Yard At-Surface Infiltration Trenches		
Drainage Area	0.46	ha
Imperviousness (Per Figure C-1 in Appendix C)	47	%
Total Roof Area to Rear Yard Infiltration Trench	0.22	ha
Runoff Depth	25	mm
Required Runoff Storage Volume to Infiltrate Runoff Depth	Required Runoff Storage Volume to Infiltrate Runoff Depth 54.1	
Number of Lots with Rear Yard Infiltration Trenches	22	
Total Length of Infiltration Trenches	273	m
Depth	0.6	m
Average Width	0.9	m
Porosity	0.4	
Preliminary Runoff Storage Volume Provided	59.0	m ³

Total Provided Infiltration/Filtration Volume =	= 235.5 m ³	
Catchmnent Area	5.65	ha
Imperviousness	62	%
Catchment Impervious Area	3.50	ha
Equivalent Depth of Rainfall Over Impervious Area (3.5 ha)	6.7	mm

Therefore, the proposed LIDs within Catchment 204 will provide an equivalent level of volume control for a rainfall depth of approximately 6.7 mm across the proposed impervious surfaces within Catchment 204.

Catchment 205

Rear Yard At-Surface Infiltration Trenches		
Lot Drainage Area	0.26	ha
Imperviousness (Per Figure C-1 in Appendix C)	47	%
Total Roof Area to Rear Yard Infiltration Trench	0.12	ha
Runoff Depth	25	mm
Required Runoff Storage Volume to Infiltrate Runoff Depth	30.6	m ³
Number of Lots with Rear Yard Infiltration Trenches	7	
Total Length of Infiltration Trenches	116	m
Depth	0.6	m
Average Width	1.1	m
Porosity	0.4	
Preliminary Runoff Storage Volume Provided	30.6	m ³

Therefore, the proposed LIDs within Rear Yard At-Surface Infiltration Trenches will provide an equivalent level of volume control for a rainfall depth of 25 mm across the proposed impervious surfaces within Rear Yard At-Surface Infiltration Trenches.

LID Sizing and Volume Control Calculations

7370 Centre Road Project Number: 2099 Date: February 2021 Designer Initials: E.S.D.

Catchment 206

Rear Yard At-Surface Infiltration Trenches		
Drainage Area	0.07	ha
Imperviousness (Per Figure C-1 in Appendix C)	47	%
Total Roof Area to Rear Yard Infiltration Trench	0.03	ha
Runoff Depth	25	mm
Required Runoff Storage Volume to Infiltrate Runoff Depth	8.2	m ³
Number of Lots with Rear Yard Infiltration Trenches	4	
Total Length of Infiltration Trenches	42	m
Depth	0.6	m
Average Width	0.85	m
Porosity	0.4	
Preliminary Runoff Storage Volume Provided	8.6	m ³

Therefore, the proposed LIDs within Rear Yard At-Surface Infiltration Trenches will provide an equivalent level of volume control for a rainfall depth of 25 mm across the proposed impervious surfaces within Rear Yard At-Surface Infiltration Trenches.

Catchment 207

Outcome 201		
Rear Yard At-Surface Infiltration Trenches		
Drainage Area	0.30	ha
Imperviousness (Per Figure C-1 in Appendix C)	47	%
Total Roof Area to Rear Yard Infiltration Trench	0.14	ha
Runoff Depth	25	mm
Required Runoff Storage Volume to Infiltrate Runoff Depth	35.3	m^3
Number of Lots with Rear Yard Infiltration Trenches	11	
Total Length of Infiltration Trenches	184	m
Depth	0.6	m
Average Width	0.8	m
Porosity	0.4	
Preliminary Runoff Storage Volume Provided	35.3	m ³

Therefore, the proposed LIDs within Rear Yard At-Surface Infiltration Trenches will provide an equivalent level of volume control for a rainfall depth of 25 mm across the proposed impervious surfaces within Rear Yard At-Surface Infiltration Trenches.

Sitewide Summary

Volume Control Total		
Total Impervious Area	19.13	ha
Total Infiltration/Filtration Volume Provided (During 25mm Storm Event)	1237.5	m ³
Equivalent Depth of Rainfall over Impervious Area	6.5	mm

Therefore, the proposed LIDs within the site will provide an equivalent level of volume control for a rainfall depth of 6.5 mm across the proposed impervious surfaces within the site.

Existing Phosphorous Budget

7370 Centre Road Project Number: 2099 Date: December 2020 Designer: E.S.D.

Areas from Figure 2.6, Existing Drainage Plan shown on Figure 2.1.

	Area (ha)	Land Use Type	Loading Rate (kg/ha/yr)	P _{load} (kg/year)
Wetland (Part of Catchment 101 & 102)	0.24	Wetland	0.04	0.01
Forest (Part of Catchment 101)	0.05	Forest	0.03	0.00
Cropland (Part of Catchment 101 & 102)	33.75	Cropland	0.11	3.71
Total	34.04		Total	3.72

Table 2. Land-Use Specific Phosphorus Export Coefficients (kg/ha/yr) for Lake Simcoe Subwatersheds

	Phosphorus Export (kg/ha/yr)											
	_ e		30If	High Intensity Development		ity ant		oad		_		<u>.</u>
Subwatershed	Cropland	Hay-Pasture	Sod Farm/Golf Course	Commercial /Industrial	Residential	Low Intensity Development	Quarry	Unpaved Road	Forest	Transition	Wetland	Open Water
Monitored Subwatersheds												
Beaver River	0.22	0.04	0.01	1.82	1.32	0.19	0.06	0.83	0.02	0.04	0.02	0.26
Black River	0.23	0.08	0.02	1.82	1.32	0.17	0.15	0.83	0.05	0.06	0.04	0.26
East Holland River	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26
Hawkestone Creek	0.19	0.10	0.06	1.82	1.32	0.09	0.10	0.83	0.03	0.04	0.03	0.26
Lovers Creek	0.16	0.07	0.17	1.82	1.32	0.07	0.06	0.83	0.06	0.06	0.05	0.26
Pefferlaw/Uxbridge Brook	0.11	0.06	0.02	1.82	1.32	0.13	0.04	0.83	0.03	0.04	0.04	0.26
Whites Creek	0.23	0.10	0.42	1.82	1.32	0.15	0.08	0.83	0.10	0.11	0.09	0.26
		Ur	nmonit	ored Su	bwater	sheds						
Barrie Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
GeorginaCreeks	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26
Hewitts Creek	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Innisfil Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Maskinonge River	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Oro Creeks North	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26
Oro Creeks South	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Ramara Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Talbot/Upper Talbot River	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
West Holland River	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26

Proposed Phosphorous Budget

7370 Centre Road Project Number: 2099 Date: December 2020

Designer: E.S.D.

	Area (ha)	Land Use Type	Loading Rate (kg/ha/yr)	BMP 1	Removal Efficiency	BMP 2	Removal Efficiency	BMP 3	Removal Efficiency	BMP 4	Removal Efficiency	Combined Removal Efficiency	Unmitigated P _{load} (kg/year)	Mitigated P _{load} (kg/year)
Park (Part of Catchment 201)	1.70	Low Intensity Residential	0.13	Wet Detention Pond	63%							63%	0.22	0.08
Residential (Part of Catchment 201)	1.13	High Intensity Residential	1.32	Rear Yard At-Surface Infiltration Trench	60%	Catchbasin Filtration Trench	45%	Wet Detention Pond	63%	Stream Buffer	65%	97%	1.49	0.04
Residential (Part of Catchment 201)	0.07	High Intensity Residential	1.32	Rear Yard At-Surface Infiltration Trench	60%	Catchbasin Infiltration Trench	87%	Wet Detention Pond	63%	Stream Buffer	65%	99%	0.09	0.00
Residential (Part of Catchment 201)	1.99	High Intensity Residential	1.32	Rear Yard At-Surface Infiltration Trench	60%	Wet Detention Pond	63%	Stream Buffer	65%			95%	2.63	0.14
Residential (Part of Catchment 201)	12.43	High Intensity Residential	1.32	Catchbasin Filtration Trench	45%	Wet Detention Pond	63%	Stream Buffer	65%			93%	16.41	1.17
Residential (Part of Catchment 201)	2.58	High Intensity Residential	1.32	Catchbasin Infiltration Trench	87%	Wet Detention Pond	63%	Stream Buffer	65%			98%	3.41	0.06
Residential (Part of Catchment 201)	5.27	High Intensity Residential	1.32	Wet Detention Pond	63%	Stream Buffer	65%					87%	6.96	0.90
Uncontrolled Rear Yard Pervious & Roof (Part of Catchment 202)	0.40	High Intensity Residential	1.32	Rear Yard At-Surface Infiltration Trench	60%	Stream Buffer	65%					86%	0.53	0.07
Rear Yard Pervious & Roof (Part of Catchment 203)	0.19	High Intensity Residential	1.32	Rear Yard At-Surface Infiltration Trench	60%	Wet Detention Pond	63%	Stream Buffer	65%			95%	0.25	0.01
SWM Facility (Part of Catchment 203)	1.55	Low Intensity Residential	0.13	Wet Detention Pond	63%	Stream Buffer	65%					87%	0.20	0.03
Residential (Catchment 204)	0.40	High Intensity Residential	1.32	Rear Yard At-Surface Infiltration Trench	60%	Catchbasin Filtration Trench	45%	Underground Storage	25%	Grassed Filter Strip	65%	94%	0.53	0.03
Residential (Catchment 204)	5.13	High Intensity Residential	1.32	Catchbasin Filtration Trench	45%	Dry SWM Pond	10%	Grassed Filter Strip	65%			83%	6.77	1.17
Residential (Part of Catchment 205)	0.10	High Intensity Residential	1.32	Rear Yard At-Surface Infiltration Trench	60%	Stream Buffer/Grassed Filter Strip	65%					86%	0.13	0.02
SWM Facility (Part of Catchment 205)	0.54	Low Intensity Residential	0.13	Stream Buffer/Grassed Filter Strip	65%							65%	0.07	0.02
Uncontrolled Rear Yard Pervious & Roof (Catchment 206)	0.07	High Intensity Residential	1.32	Rear Yard At-Surface Infiltration Trench	60%	Enhanced Grass Swale	25%					70%	0.09	0.03
Uncontrolled Rear Yard Pervious & Roof (Catchment 207)	0.30	High Intensity Residential	1.32	Rear Yard At-Surface Infiltration Trench	60%	Enhanced Grass Swale	25%					70%	0.40	0.12
Uncontrolled Rear Yard Pervious & Roof (Catchment 208)	0.19	High Intensity Residential	1.32	Rear Yard At-Surface Infiltration Trench	60%	Enhanced Grass Swale	25%					70%	0.25	0.08
To	tal 34.04				•						•	Total	40.42	3.97

Table 2. Land-Use Specific Phosphorus Export Coefficients (kg/ha/yr) for Lake Simcoe Subwatersheds

Subwatersheds													
	Phosphorus Export (kg/ha/yr)												
	_	Hay-Pasture	Sod Farm/Golf Course	High Intensity Development		sity ant		ad		n		er	
Subwatershed	Cropland			Commercial /Industrial	Residential	Low Intensity Development	Quarry	Unpaved Road	Forest	Transition	Wetland	Open Water	
Monitored Subwatersheds													
Beaver River	0.22	0.04	0.01	1.82	1.32	0.19	0.06	0.83	0.02	0.04	0.02	0.26	
Black River	0.23	0.08	0.02	1.82	1.32	0.17	0.15	0.83	0.05	0.06	0.04	0.26	
East Holland River	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26	
Hawkestone Creek	0.19	0.10	0.06	1.82	1.32	0.09	0.10	0.83	0.03	0.04	0.03	0.26	
Lovers Creek	0.16	0.07	0.17	1.82	1.32	0.07	0.06	0.83	0.06	0.06	0.05	0.26	
Pefferlaw/Uxbridge Brook	0.11	0.06	0.02	1.82	1.32	0.13	0.04	0.83	0.03	0.04	0.04	0.26	
Whites Creek	0.23	0.10	0.42	1.82	1.32	0.15	0.08	0.83	0.10	0.11	0.09	0.26	
		Ur	nmonit	tored Su	bwater	sheds							
Barrie Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26	
GeorginaCreeks	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26	
Hewitts Creek	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26	
Innisfil Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26	
Maskinonge River	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26	
Oro Creeks North	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26	
Oro Creeks South	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26	
Ramara Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26	
Talbot/Upper Talbot River	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26	
West Holland River	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26	

APPENDIX F PRELIMINARY VORTECH SIZING CALCULATIONS

VORTECHS SYSTEM® ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON AN AVERAGE PARTICLE SIZE OF 80 MICRONS

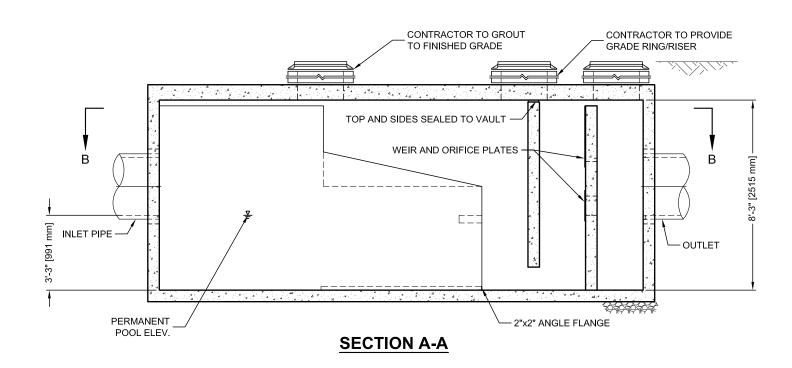
7370 CENTRE RD UXBRIDGE, ON MODEL PC1421 OFF-LINE SITE DESIGNATION OGS1

Design Ratio¹ =

(25.52 hectares) x (0.6) x (2.775) (14.3 m2)

= 2.96

Bypass occurs at an elevation of 0.91m (at approximately 19 l/s/m2)

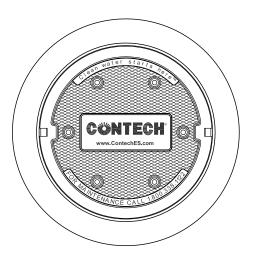

Rainfall Intensity	Operating Rate ²	Flow Treated	% Total Rainfall	Rmvl. Effcy⁴	Rel. Effcy
mm/hr	% of capacity	(l/s)	Volume ³	(%)	(%)
0.5	2.2	21.5	9.9%	98.0%	9.7%
1.0	4.3	43.0	10.7%	98.0%	10.5%
1.5	6.5	64.6	9.8%	98.0%	9.6%
2.0	8.7	86.1	8.9%	96.9%	8.6%
2.5	10.9	107.6	7.2%	96.0%	6.9%
3.0	13.0	129.1	6.1%	93.8%	5.7%
3.5	15.2	150.7	3.4%	91.8%	3.1%
4.0	17.4	172.2	5.0%	89.9%	4.5%
4.5	19.5	193.7	4.2%	88.0%	3.7%
5.0	21.7	215.2	3.2%	86.8%	2.8%
6.0	26.1	258.3	5.4%	84.3%	4.6%
7.0	30.4	301.3	4.2%	82.0%	3.4%
8.0	34.7	344.3	3.8%	80.0%	3.0%
9.0	39.1	387.4	2.2%	76.8%	1.7%
10.0	43.4	430.4	2.3%	72.8%	1.7%
15.0	65.1	645.6	4.3%	54.0%	2.3%
20.0	86.9	860.9	1.7%	24.4%	0.4%
25.0	108.6	1076.1	1.1%	8.0%	0.1%
30.0	130.3	1291.3	0.5%	8.0%	0.0%
35.0	152.0	1506.5	0.1%	8.0%	0.0%
40.0	173.7	1721.7	0.3%	8.0%	0.0%
					82.3%

 $\begin{array}{ll} \mbox{Predicted Annual Runoff Volume Treated =} & 94.2\% \\ \mbox{Assumed removal efficiency for bypassed flows =} & 0.0\% \\ \mbox{Estimated reduction in efficiency}^5 = & 0.0\% \\ \mbox{Predicted Net Annual Load Removal Efficiency =} & 82\% \\ \end{array}$

- 1 Design Ratio = (Total Drainage Area) x (Runoff Coefficient) x (Rational Method Conversion) / Grit Chamber Area
 - The Total Drainage Area and Runoff Coefficient are specified by the site engineer.
 - The rational method conversion based on the units in the above equation is 2.775.
- 2 Operating Rate (% of capacity) = percentage of peak operating rate of 68 l/s/m².
- 3 Based on 65 years of hourly rainfall data from Canadian Station 6158350, Toronto ON (Bloor)
- 4 Based on Contech Construction Products laboratory verified removal of an average particle size of TYPICAL microns (see Technical Bulletin #1).
- 5- Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

Calculated by: JAK 12/22 Checked by:

SECTION B-B



VORTECHS PC1421 DESIGN NOTES

VORTECHS PC1421 RATED TREATMENT CAPACITY IS 34 CFS, OR PER LOCAL REGULATIONS. IF THE SITE CONDITIONS EXCEED RATED TREATMENT CAPACITY, AN UPSTREAM BYPASS STRUCTURE IS REQUIRED.

THE STANDARD INLET/OUTLET CONFIGURATION IS SHOWN. FOR OTHER CONFIGURATION OPTIONS, PLEASE CONTACT YOUR CONTECH ENGINEERED SOLUTIONS, LLC REPRESENTATIVE. www.ContechES.com

FRAME AND COVER (DIAMETER VARIES) N.T.S.

-	SITE SI A REQ		CIFIC REMEN	IT:	<u>s</u>
STRUCTURE ID					*
WATER QUALITY	FLOW RAT	E ((CFS)		*
PEAK FLOW RATI	E (CFS)		· ·		*
RETURN PERIOD	OF PEAK F	LO	W (YRS)		*
			<u> </u>		
PIPE DATA:	I.E.		MATERIAL	D	IAMETER
INLET PIPE 1	*		*		*
INLET PIPE 2	*		*		*
OUTLET PIPE	*		*		*
RIM ELEVATION					*
ANTI-FLOTATION	BALLAST		WIDTH *	Ŧ	HEIGHT *
NOTES/SPECIAL	REQUIREM	EN.	TS:		
* PER ENGINEER	OF RECOR	D.			

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGINEERED SOLUTIONS, LLC REPRESENTATIVE. www.ContechES.com
- 4. VORTECHS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.
- 5. STRUCTURE SHALL MEET AASHTO HS20 AND CASTINGS SHALL MEET AASHTO M306 LOAD RATING, ASSUMING GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION.
- 6. INLET PIPE(S) MUST BE PERPEDICULAR TO THE VAULT AND AT THE CORNER TO INTRODUCE THE FLOW TANGENTIALLY TO THE SWIRL CHAMBER. DUAL INLETS NOT TO HAVE OPPOSING TANGENTIAL FLOW DIRECTIONS.
- 7. OUTLET PIPE(S) MUST BE DOWN STREAM OF THE FLOW CONTROL BAFFLE AND MAY BE LOCATED ON THE SIDE OR END OF THE VAULT. THE FLOW CONTROL WALL MAY BE TURNED TO ACCOMODATE OUTLET PIPE KNOCKOUTS ON THE SIDE OF THE VAULT.

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE VORTECHS STRUCTURE (LIFTING CLUTCHES PROVIDED).
- C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS AND ASSEMBLE STRUCTURE.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN.
- E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

www.ContechES.com 9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX

VORTECHS PC1421 STANDARD DETAIL

VORTECHS SYSTEM® ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON AN AVERAGE PARTICLE SIZE OF 80 MICRONS

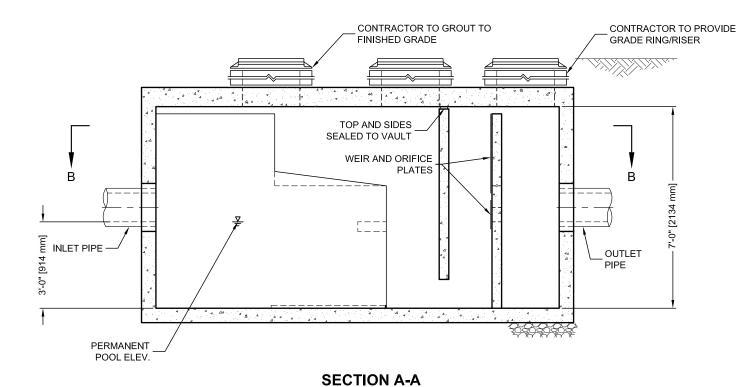
7370 CENTRE RD UXBRIDGE, ON MODEL 7000 OFF-LINE SITE DESIGNATION OGS2

Design Ratio¹ =

(5.61 hectares) x (0.6) x (2.775) (4.7 m2)

= 1.99

Bypass occurs at an elevation of 0.98m (at approximately 47 l/s/m2)

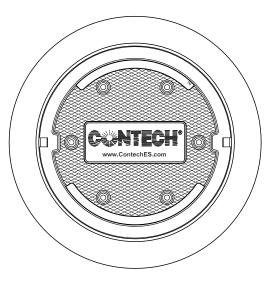

Rainfall Intensity	Operating Rate ²	Flow Treated	% Total Rainfall	Rmvl. Effcy⁴	Rel. Effcy
mm/hr	% of capacity	(I/s)	Volume ³	(%)	(%)
0.5	1.5	4.6	9.9%	98.0%	9.7%
1.0	2.9	9.1	10.7%	98.0%	10.5%
1.5	4.4	13.7	9.8%	98.0%	9.6%
2.0	5.8	18.2	8.9%	98.0%	8.7%
2.5	7.3	22.8	7.2%	97.6%	7.0%
3.0	8.8	27.3	6.1%	96.9%	5.9%
3.5	10.2	31.9	3.4%	96.0%	3.3%
4.0	11.7	36.4	5.0%	95.3%	4.8%
4.5	13.1	41.0	4.2%	93.8%	3.9%
5.0	14.6	45.5	3.2%	92.8%	3.0%
6.0	17.5	54.6	5.4%	89.9%	4.9%
7.0	20.4	63.7	4.2%	87.3%	3.6%
8.0	23.4	72.8	4.0%	85.7%	3.4%
9.0	26.3	81.9	2.4%	84.3%	2.0%
10.0	29.2	91.0	2.7%	82.6%	2.2%
15.0	43.8	136.5	6.1%	72.8%	4.4%
20.0	58.4	182.0	2.8%	59.3%	1.7%
25.0	73.0	227.5	1.9%	45.6%	0.8%
30.0	87.6	273.0	0.9%	22.7%	0.2%
35.0	102.2	318.5	0.2%	8.0%	0.0%
40.0	116.9	364.0	0.5%	8.0%	0.0%
					89.7%

Predicted Annual Runoff Volume Treated = 92.9%Assumed removal efficiency for bypassed flows = 0.0%Estimated reduction in efficiency 5 = 6.5%Predicted Net Annual Load Removal Efficiency = 83%

- 1 Design Ratio = (Total Drainage Area) x (Runoff Coefficient) x (Rational Method Conversion) / Grit Chamber Area
 - The Total Drainage Area and Runoff Coefficient are specified by the site engineer.
 - The rational method conversion based on the units in the above equation is 2.775.
- 2 Operating Rate (% of capacity) = percentage of peak operating rate of 68 l/s/m².
- 3 Based on 65 years of hourly rainfall data from Canadian Station 6158350, Toronto ON (Bloor)
- 4 Based on Contech Construction Products laboratory verified removal of an average particle size of TYPICAL microns (see Technical Bulletin #1).
- 5- Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

Calculated by: JAK 2/26 Checked by:

SECTION B-B



Vortechs*

VORTECHS 7000 DESIGN NOTES

VORTECHS 7000 RATED TREATMENT CAPACITY IS 11 CFS, OR PER LOCAL REGULATIONS. IF THE SITE CONDITIONS EXCEED RATED TREATMENT CAPACITY, AN UPSTREAM BYPASS STRUCTURE IS REQUIRED.

THE STANDARD INLET/OUTLET CONFIGURATION IS SHOWN. FOR OTHER CONFIGURATION OPTIONS, PLEASE CONTACT YOUR CONTECH REPRESENTATIVE. www.ContechES.com

FRAME AND COVER (DIAMETER VARIES) N.T.S.

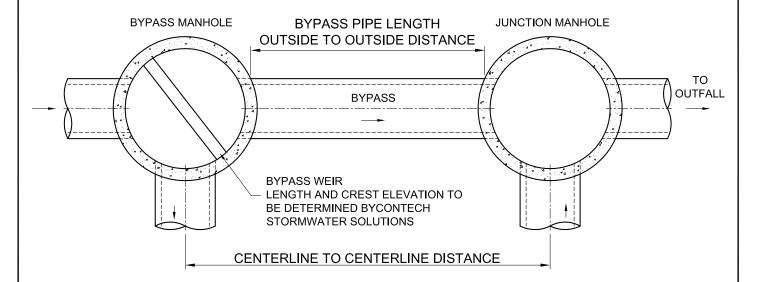
STRUCTURE ID			*
WATER QUALITY	FLOW RAT	E (CFS)	*
PEAK FLOW RAT	E (CFS)		*
RETURN PERIOD	OF PEAK F	LOW (YRS)	*
PIPE DATA:	I.E.	MATERIAL	DIAMETER
INLET PIPE 1	*	*	*
INLET PIPE 2	*	*	*
OUTLET PIPE	*	*	*
RIM ELEVATION			*
ANTI-FLOTATION	BALLAST	WIDTH	HEIGHT
NOTES/SPECIAL	DEGLUDELA	*	*

SITE SPECIFIC

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH REPRESENTATIVE. www.ContechES.com
- 4. VORTECHS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.
- 5. STRUCTURE SHALL MEET AASHTO HS20 AND CASTINGS SHALL MEET AASHTO M306 LOAD RATING, ASSUMING GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION.
- 6. INLET PIPE(S) MUST BE PERPEDICULAR TO THE VAULT AND AT THE CORNER TO INTRODUCE THE FLOW TANGENTIALLY TO THE SWIRL CHAMBER. DUAL INLETS NOT TO HAVE OPPOSING TANGENTIAL FLOW DIRECTIONS.
- 7. OUTLET PIPE(S) MUST BE DOWN STREAM OF THE FLOW CONTROL BAFFLE AND MAY BE LOCATED ON THE SIDE OR END OF THE VAULT. THE FLOW CONTROL WALL MAY BE TURNED TO ACCOMODATE OUTLET PIPE KNOCKOUTS ON THE SIDE OF THE VAULT.

NSTALLATION NOTES


- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE VORTECHS STRUCTURE (LIFTING CLUTCHES PROVIDED).
- C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS AND ASSEMBLE STRUCTURE.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN.
- E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

800-338-1122 513-645-7000 513-645-7993 FAX

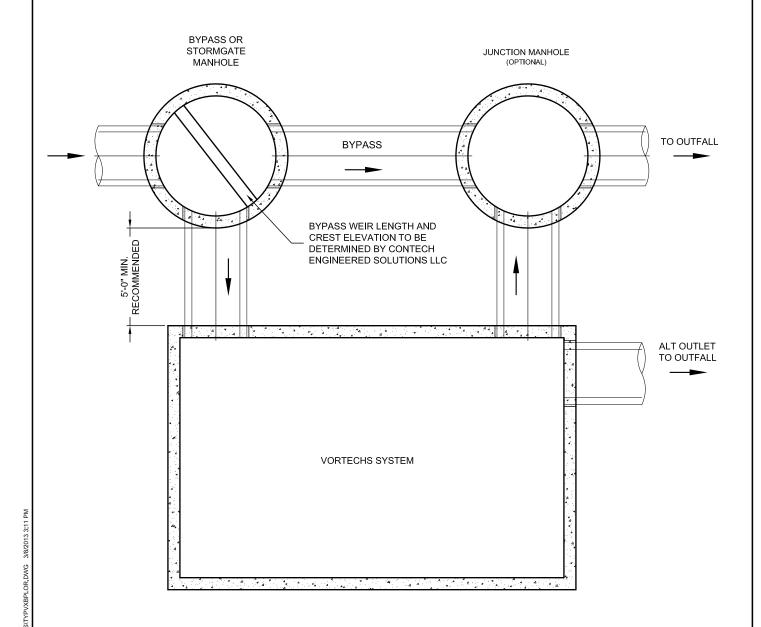
VORTECHS 7000 STANDARD DETAIL

FOR INFORMATIONAL PURPOSES ONLY NOT INTENDED AS A CONSTRUCTION DOCUMENT -BYPASS AND JUNCTION STRUCTURES NOT SUPPLIED BY CONTECH STORMWATER SOLUTIONS-

NOTE: BYPASS AND JUNCTION MANHOLE DIAMETERS ARE ASSUMED BASED ON THE TREATMENT CAPACITY OF THE VORTECHS SYSTEM. THESE DIAMETERS MAY CHANGE DEPENDING ON SPECIFIC SITE CONDITIONS. CONTACT YOUR CONTECH STORMWATER SOLUTIONS DESIGN ENGINEER.

Vortechs Model Size	Vortech	ns Dims	Recommended Pipe Size	Typical	Typical Junction	Approximate Center to	Approximate Bypass Pipe
Wiodel Size	Length	Width	Diameter	Bypass Manhole	Manhole	Center Distance	Length Outside
	ft / mm	ft / mm	in / mm	Diameter	Diameter	ft / mm	ft / mm
1000	9 / 2743	3 / 914	10 / 250	4 / 1200	4 / 1200	7.5 / 2286	3.5 / 1067
2000	10 / 3048	4 / 1219	12 / 300	4 / 1200	4 / 1200	8.5 / 2591	4.42 / 1347
3000	11 / 3353	5 / 1524	15 / 375	5 / 1500	4 / 1200	9.25 / 2819	4.75 / 1448
4000	12 / 3658	6 / 1829	15 / 375	5 / 1500	4 / 1200	10.25 / 3124	5.75 / 1753
5000	13 / 3962	7 / 2134	18 / 450	6 / 1800	5 / 1500	11.17 / 3405	5.67 / 1728
7000	14 / 4267	8 / 2438	18 / 450	6 / 1800	5 / 1500	12.17 / 3709	6.67 / 2033
9000	15 / 4572	9 / 2743	21 / 525	6 / 1800	6 / 1800	11.83 / 3606	5.83 / 1777
11000	16 / 4877	10 / 3048	24 / 600	6 / 1800	6 / 1800	12.67 / 3862	6.67 / 2033
16000	18 / 5486	12 / 3658	27 / 675	6 / 1800	6 / 1800	14.58 / 4444	8.58 / 2615

This CADD file is for the purpose of specifying stormwater treatment equipment to be furnished by CONTECH Stormwater Solutions and may only be transferred to other documents exactly as provided by CONTECH Stormwater Solutions. Title block information, excluding the CONTECH Stormwater Solutions logo and the Vortechs Stormwater Treatment System designation and patent number, may be deleted if necessary. Revisions to any part of this CADD file without prior coordination with CONTECH Stormwater Solutions shall be considered unauthorized use of proprietary information.



TYPICAL BYPASS & JUNCTION MANHOLE LAYOUT WITH SPECIFICATIONS TABLE FOR VORTECHS® STORMWATER TREATMENT SYSTEM

DATE: 1/24/07 SCALE: NONE FILE NAME: TYPTBLVXBPRmet DRAWN: GMC CHECKED: NDG

FOR INFORMATIONAL PURPOSES ONLY NOT INTENDED AS A CONSTRUCTION DOCUMENT

- BYPASS AND JUNCTION STRUCTURES MAY OR MAY NOT BE SUPPLIED BY CONTECH -

ACTUAL ORIENTATION AND LAYOUT MAY VARY DUE TO SITE SPECIFIC CONSIDERATIONS

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.

200 Enterprise Drive, Scarborough, ME 04074

877-907-8676 207-885-9830 207-885-9825 FAX

TYPICAL BYPASS LAYOUT VORTECHS® STORMWATER TREATMENT SYSTEM

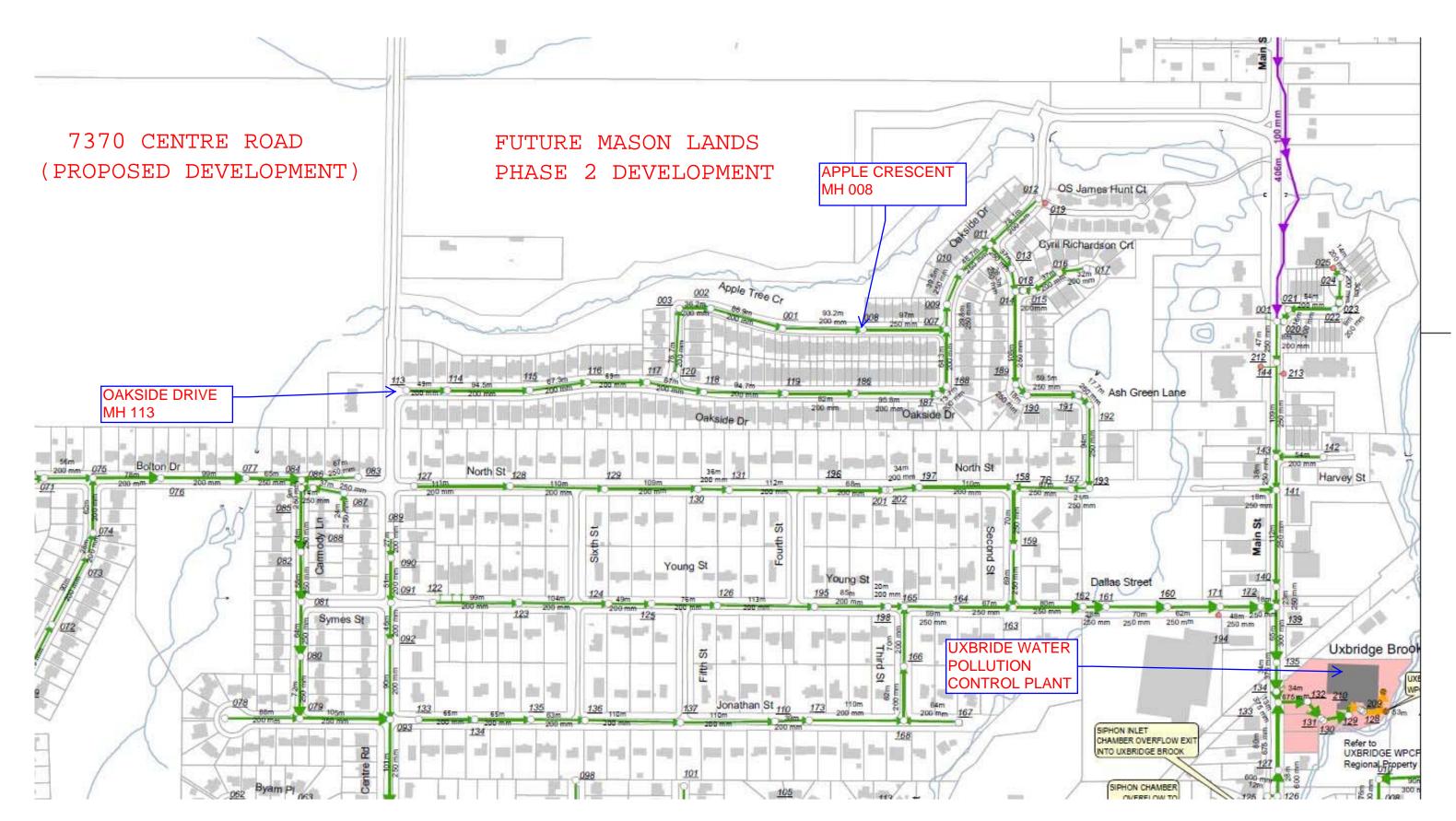
DATE:3/8/13 SCALE: NONE PROJECT No.:TYPVXBPLOR SEQ. No.: N/A DRAWN: SCF

APPENDIX G SANITARY FLOW CALCULATIONS

Mannings n = 0.013

Avg. Domestic Flow (l/cap/day) = 364

Infiltration Rate (l/s/ha) = 0.26


Sanitary Design Sheet 7370 Centre Road Uxbridge FSR Uxbridge, Ontario

Project: 7370 Centre Road Uxbridge

Project No. 2099

Date: 29-Nov-20

Minimum Velocity (m/s) = Maximum Velocity (m/s) = Minimum Pipe Slope (%) =	= 3.65	Min. H	armon Peak	king Factor = king Factor = E SIZE USED	= 1.5																Designed By Reviewed By: 70 Centre Road Uxbridge		ary/2020 11(Nov) 27 - F	SR Sanitary Design	Updated\[2099 - P	reliminary Sanitary De	esign Sheet.xlsm]Desig	CONFIRM IF ACTUAL V HIDE COI
LOCATION						RESIDEN	NTIAL			IN	DUSTRIAI	L/COMMERCI	AL/INSTITU	TIONAL			I	FLOW CALCU	JLATIONS						PIPE DAT	'A		
STREET	MA) FROM	NHOLE TO	AREA	ACCUM. AREA	UNITS		ENSITY F PER HA	RESIDENTIAL POPULATION	ACCUM. RESIDENTIAL POPULATION	AREA	ACCUM. AREA	POPULATION DENSITY	FLOW RATE	ACCUM. EQUIV. POPULATION	INFILTRATION	TOTAL ACCUM. POPULATION	AVG. DOMESTIC FLOW	ACCUM. AVG DOMESTIC FLOW	PEAKING FACTOR	PEAKED RESIDENTIAL FLOW	ICI FLOW	TOTAL FLOW	LENGTH	PIPE DIAMETER	SLOPE	FULL FLOW CAPACITY	V FULL FLOW VELOCITY	
			(ha)	(ha)	(#)	(p/unit)	(p/ha)			(ha)	(ha)	(p/ha)	(l/s/ha)		(L/s)		(L/s)	(L/s)		(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/s)	(m/s)	(m/s)
Street X - Townhouse	1	2	0	0	27	3		81	81	0	0	0	0	0	0.0	81	0.3	0.3	3.80	1.3	0.0	1.3	178.1	200	0.50	23.2	0.74	0.40
Street J - Single Detached	2	3	13.86	13.86	222	3.5		777	858	0	0	0	0	0	3.6	858	3.3	3.6	3.80	13.7	0.0	17.3	630.7	200	0.50	23.2	0.74	0.81
Street Y - Townhouse	4	5	0	0	42	3		126	126	0	0	0	0	0	0.0	126	0.5	0.5	3.80	2.0	0.0	2.0	141.1	200	0.50	23.2	0.74	0.44
Street E - Single Detached	5	3	11.76	11.76	196	3.5		686	812	0	0	0	0	0	3.1	812	2.9	3.4	3.80	13.0	0.0	16.1	791.0	200	0.50	23.2	0.74	0.80
Street J - Conveyance	3	6	0	25.62	0			0	1670	0	0	0	0	0	6.7	1670	0.0	7.0	3.65	25.6	0.0	32.3	81.5	200	1.50	40.1	1.28	1.42
Street J - Single Detached	6	7	6.19	31.81	103	3.5		360.5	2030.5	0	0	0	0	0	8.3	2030.5	1.5	8.6	3.58	30.6	0.0	38.9	330.5	200	1.50	40.1	1.28	1.46

EXCERPT FROM TOWNSHIP OF UXBRIDGE SANITARY SEWERAGE SYSTEM MAP (DATED MARCH 22, 2019)

Sanitary Design Sheet 7370 Centre Road Option 1 - Phase 1 Proposed Development to Oakside Drive Uxbridge, Ontario

Project: 7370 Centre Road Project No. 2099 Date: 2-Dec-20

Designed By: N.D.M. Reviewed By: 0

Minimum Sewer Diameter (mm) = 200 Avg. Domestic Flow (l/cap/day) = 364

Mannings n = 0.013 Infiltration Rate (l/s/ha) = 0.26

Minimum Velocity (m/s) = 0.60 Max. Harmon Peaking Factor = 3.8

Maximum Velocity (m/s) = 3.65 Min. Harmon Peaking Factor = 1.5

Minimum Pipe Slope (%) = 0.50 NOMINAL PIPE SIZE USED

LOCATION						RESIDEN	TIAL			IN	DUSTRIAL	/COMMERCIA	L/INSTITUT	IONAL			F	LOW CALCU	LATIONS						PIPE DAT	A		
	MANI	HOLE	AREA	ACCUM.	UNITS	DEN	SITY	RESIDENTIAL	ACCUM. RESIDENTIAL	AREA	ACCUM.	POPULATION	FLOW	ACCUM. EQUIV.	INFILTRATION	TOTAL ACCUM,	AVG. DOMESTIC	ACCUM. AVG. DOMESTIC	PEAKING	PEAKED RESIDENTIAL	ICI	TOTAL	LENGTH	PIPE	SLOPE	FULL FLOW		
STREET	FROM	то		AREA		PER UNIT	PER HA	POPULATION	POPULATION		AREA	DENSITY	RATE	POPULATION		POPULATION	FLOW	FLOW	FACTOR	FLOW	FLOW	FLOW		DIAMETER		CAPACITY	VELOCITY	VELOCITY
			(ha)	(ha)	(#)	(p/unit)	(p/ha)			(ha)	(ha)	(p/ha)	(l/s/ha)		(L/s)		(L/s)	(L/s)		(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/s)	(m/s)	(m/s)
7270 C D . L(C' L D L	2) (T/O1 +	6.10	6.10	102	2.5		260.5	260.5					0	1.6	260.5	1.5	1.5	2.00	5.0	0.0	7.4	220.5	200	2.00	46.4	1.40	1.06
7370 Centre Road (Single Detached)	2	MH21A	6.19	6.19	103	3.5		360.5	360.5	0	0	0	0	0	1.6	360.5	1.5	1.5	3.80	5.8	0.0	7.4	330.5	200	2.00	46.4	1.48	1.06
Orbrida Daine	MIIOLA	MIIOA	0.54	6.72	-	2.5	20.0	21	201.5	0	0	0	0	0	1.7	201.5	0.1	1.6	2.00	6.1	0.0	7.0	40.0	200	2.00	46.4	1.40	1.00
Oakside Drive Oakside Drive	MH21A MH20A	MH20A MH19A	0.54	6.73 7.543	6	3.5 3.5454545	38.9 48.0	39	381.5 420.5	0	0	0	0	0	2.0	381.5 420.5	0.1	1.6	3.80	6.1	0.0	7.9 8.7	49.0 94.5	200	2.00 1.10	46.4 34.4	1.48	0.91
Oakside Drive	MH19A	MH18A	0.595	8.138	8	3.5434343	47.1	28	448.5	0	0	0	0	0	2.0	448.5	0.2	1.9	3.80	7.2	0.0	9.3	67.3	200	0.60	25.4	0.81	0.74
Oakside Drive	MH18A	MH17A	0.64	8.778	8	3.5	43.8	28	476.5	0	0	0	0	0	2.3	476.5	0.1	2.0	3.80	7.6	0.0	9.9	69.0	200	0.60	25.4	0.81	0.74
Oakside Drive	MH17A	MH16A	0.474	9.252	5	3.6	38.0	18	494.5	0	0	0	0	0	2.4	494.5	0.1	2.1	3.80	7.9	0.0	10.3	67.4	200	1.92	45.4	1.45	1.16
Oakside Drive	MH16A	MH15A	0.815	10.067	13	3.4615385	55.2	45	539.5	0	0	0	0	0	2.6	539.5	0.2	2.3	3.80	8.6	0.0	11.3	94.7	200	3.68	62.9	2.00	1.50
Oakside Drive	MH15A	MH14A	0.612	10.679	12	3.3333333	65.4	40	579.5	0	0	0	0	0	2.8	579.5	0.2	2.4	3.80	9.3	0.0	12.1	82.0	200	2.93	56.1	1.79	1.41
Oakside Drive	MH14A	MH13A	0.789	11.468	15	3.3333333	63.4	50	629.5	0	0	0	0	0	3.0	629.5	0.2	2.7	3.80	10.1	0.0	13.1	95.8	200	1.24	36.5	1.16	1.06
Oakside Drive	MH13A	MH12A	0.22	11.688	2	3.5	31.8	7	636.5	0	0	0	0	0	3.0	636.5	0.0	2.7	3.80	10.2	0.0	13.2	13.7	200	2.48	51.6	1.64	1.36
Oakside Drive	MH12A	MH11A	0.378	12.066	5	3.6	47.6	18	654.5	0	0	0	0	0	3.1	654.5	0.1	2.8	3.80	10.5	0.0	13.6	64.3	200	0.47	22.5	0.72	0.75
											1												i					
Apple Tree Crescent	MH11-5A	MH11-4A	0.564	0.564	9	3.5555556	56.7	32	32	0	0	0	0	0	0.1	32	0.1	0.1	3.80	0.5	0.0	0.7	76.7	200	3.02	57.0	1.81	0.58
Apple Tree Crescent	MH11-4A	MH11-3A	0	0.564	0			0	32	0	0	0	0	0	0.1	32	0.0	0.1	3.80	0.5	0.0	0.7	36.2	200	1.80	44.0	1.40	0.49
Apple Tree Crescent	MH11-3A	MH11-2A	0.43	0.994	6	3.5	48.8	21	53	0	0	0	0	0	0.3	53	0.1	0.2	3.80	0.8	0.0	1.1	86.9	200	3.40	60.4	1.92	0.72
Apple Tree Crescent	MH11-2A	MH11-1A	0.448	1.442	10	3.2	71.4	32	85	0	0	0	0	0	0.4	85	0.1	0.4	3.80	1.4	0.0	1.7	93.2	200	1.65	42.1	1.34	0.63
Apple Tree Crescent	MH11-1A	MH11A	0.622	2.064	16	3.25	83.6	52	137	0	0	0	0	0	0.5	137	0.2	0.6	3.80	2.2	0.0	2.7	96.8	250	0.43	39.0	0.79	0.44
Oakside Drive	MH11A	MH10A	0.088	14.218	1	4	45.5	4	795.5	0	0	0	0	0	3.7	795.5	0.0	3.4	3.80	12.7	0.0	16.4	29.8	250	0.47	40.7	0.83	0.78
Oakside Drive	MH10A	MHAH14-001	0.33	14.548	5	3.6	54.5	18	813.5	0	0	0	0	0	3.8	813.5	0.1	3.4	3.80	13.0	0.0	16.8	39.5	250	0.46	40.3	0.82	0.78
Oakside Drive	мнан14-0010	мнан14-001	0.335	14.883	5	3.6	53.7	18	831.5	0	0	0	0	0	3.9	831.5	0.1	3.5	3.80	13.3	0.0	17.2	46.7	250	0.60	46.0	0.94	0.87
Oakside Drive	мнан14-0012	мнан14-001	0.638	0.638	10	3.5	54.9	35	35	0	0	0	0	0	0.2	35	0.1	0.1	3.80	0.6	0.0	0.7	78.1	200	1.00	32.8	1.04	0.42
Ash Green Lane	МНАН14-001	MH7A	0.098	15.619	0			0	866.5	0	0	0	0	0	4.1	866.5	0.0	3.7	3.80	13.9	0.0	17.9	37.0	250	0.49	41.6	0.85	0.81
Ash Green Lane	MH7A	MH6A	0	15.619	0			0	866.5	0	0	0	0	0	4.1	866.5	0.0	3.7	3.80	13.9	0.0	17.9	26.3	250	0.65	47.9	0.98	0.90
Future Block 110	A5a	MH6A	1.151	1.151	14	4.2857143	52.1	60	60	0	0	0	0	0	0.3	60	0.3	0.3	3.80	1.0	0.0	1.3	12.7	250	0.55	44.1	0.90	0.38
Ash Green Lane	MH6A	MH5A	0.871	17.641	13	3.5384615	52.8	46	972.5	0	0	0	0	0	4.6	972.5	0.2	4.1	3.80	15.6	0.0	20.2	108.2	250	0.48	41.2	0.84	0.83
Ash Green Lane	MH5A	MH4A	0.28	17.921	3	3.6666667	39.3	11	983.5	0	0	0	0	0	4.7	983.5	0.0	4.1	3.80	15.7	0.0	20.4	18.2	250	0.50	42.0	0.86	0.85
Ash Green Lane	MH4A	MH3A	0.284	18.205	3	3.6666667	38.7	11	994.5	0	0	0	0	0	4.7	994.5	0.0	4.2	3.80	15.9	0.0	20.7	59.5	250	0.50	42.0	0.86	0.85
Ash Green Lane	MH3A	MH2A	0	18.205	0	2.6	20.5	0	994.5	0	0	0	0	0	4.7	994.5	0.0	4.2	3.80	15.9	0.0	20.7	17.7	250	0.62	46.8	0.95	0.92
Ash Green Lane Ash Green Lane	MH2A MH1A	MH1A EXMH28-61	0.59	18.795 18.795	5	3.6	30.5	18	1012.5 1012.5	0	0	0	0	0	4.9	1012.5 1012.5	0.1	4.3	3.80	16.2	0.0	21.1	94.5 20.6	250 250	0.40	37.6 42.0	0.77	0.78
North Street	EXMH28-61	EXMH28-60	0.7899	19.5849	5	3.5	22.2	17.5	1012.5	0	0	0	0	0	5.1	1012.3	0.0	4.3	3.79	16.2 16.5	0.0	21.1	76.0	250	0.50	42.0	0.86	0.86
North Street	EXWIII28-01	EAWIII28-00	0.7899	19.3649	3	3.3	22.2	17.3	1030	U	0	U	U	U	3.1	1030	0.1	4.5	3.19	10.5	0.0	21.3	70.0	230	0.50	42.0	0.80	0.80
North Street	MHS22	MHS21	1.3566	1.3566	10	3.5	25.8	35	35	0	0	0	0	0	0.4	35	0.1	0.1	3.80	0.6	0.0	0.9	110.0	200	1.00	32.8	1.04	0.44
North Street	MHS21	MHS20	1.228	2.5846	8	3.5	22.8	28	63	0	0	0	0	0	0.7	63	0.1	0.3	3.80	1.0	0.0	1.7	110.0	200	0.50	23.2	0.74	0.43
North Street	MHS20	MHS19	1.1447	3.7293	7	3.5	21.4	24.5	87.5	0	0	0	0	0	1.0	87.5	0.1	0.4	3.80	1.4	0.0	2.4	110.0	200	0.90	31.1	0.99	0.43
North Street	MHS19	MHS18	0.3657	4.095	2	3.5	19.1	7	94.5	0	0	0	0	0	1.1	94.5	0.0	0.4	3.80	1.5	0.0	2.6	35.0	200	1.80	44.0	1.40	0.75
North Street	MHS18	MHS17	1.2374	5.3324	8	3.5	22.6	28	122.5	0	0	0	0	0	1.4	122.5	0.1	0.5	3.80	2.0	0.0	3.3	110.0	200	2.00	46.4	1.48	0.85
North Street	MHS17	MHS16	1.2162	6.5486	8	3.5	23.0	28	150.5	0	0	0	0	0	1.7	150.5	0.1	0.6	3.80	2.4	0.0	4.1	110.0	200	1.00	32.8	1.04	0.70
North Street	MHS16	EXMH28-60	1.2226	7.7712	8	3.5	22.9	28	178.5	0	0	0	0	0	2.0	178.5	0.1	0.8	3.80	2.9	0.0	4.9	110.0	200	1.00	32.8	1.04	0.75
Second Street	EXMH28-60	MH28-73	0.1753	27.5314	1	3.5	20.0	3.5	1212	0	0	0	0	0	7.2	1212	0.0	5.1	3.74	19.1	0.0	26.3	69.8	250	0.71	50.1	1.02	1.03
Second Street	MH28-73	MH28-64	0	27.5314	0	3.5		0	1212	0	0	0	0	0	7.2	1212	0.0	5.1	3.74	19.1	0.0	26.3	69.5	250	0.50	42.0	0.86	0.90
Dallas Street	MH28-64	MH28-65	18.8	46.3314	97	3.5	18.1	339.5	1551.5	0	0	0	0	0	12.0	1551.5	1.4	6.5	3.67	24.0	0.0	36.0	80.0	250	0.69	49.4	1.01	1.10
Danas Street	MH28-64	MH28-03	18.8	40.5514	9/	3.3	16.1	339.3	1331.3	U	U	U	U	U	12.0	1331.3	1.4	0.3	3.67	24.0	0.0	36.0	80.0	250	0.69	49.4	1.01	1.10

Minimum Velocity (m/s) = 0.60 Maximum Velocity (m/s) = 3.65

Mannings n = 0.013

Avg. Domestic Flow (l/cap/day) = 364

Max. Harmon Peaking Factor = 3.8

Min. Harmon Peaking Factor = 1.5

Infiltration Rate (l/s/ha) = 0.26

Sanitary Design Sheet 7370 Centre Road Option 1 - Phase 1 Proposed Development to Oakside Drive Uxbridge, Ontario

Project: 7370 Centre Road

Project No. 2099 Date: 2-Dec-20

Designed By: N.D.M.

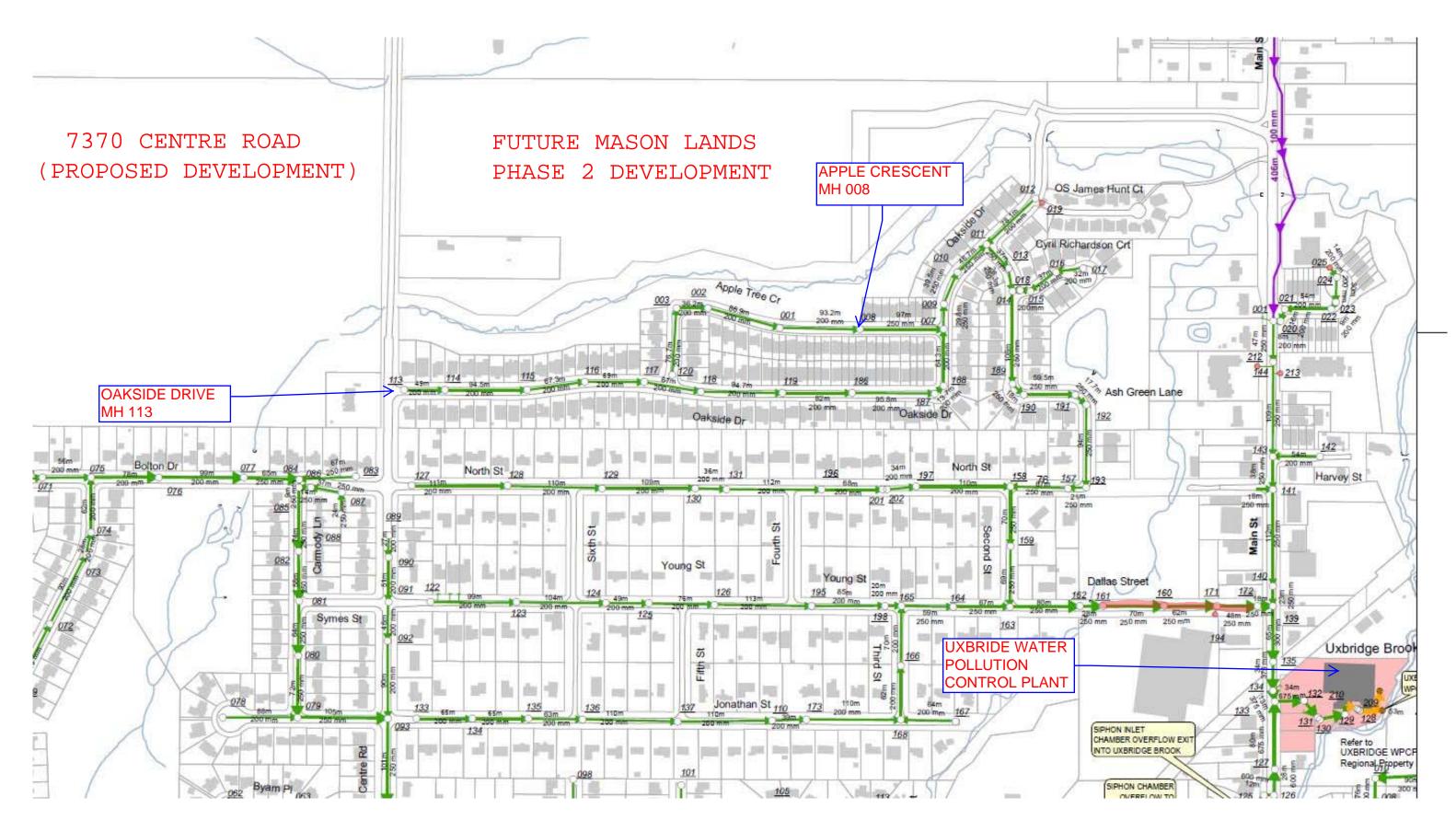
Reviewed By: 0

Minimum Pipe Slope (%) = 0.50 NOMINAL PIPE SIZE USED P 2099 7370 Centre Road Uxbridge Design Pipe Design Sanitary 2020 11 (Nov.) 30 - Sanitary Capacity Sensitivity Phase 1 MDTR Through Oakside (2099-Sanitary Design Sheet (Phase 1 MDTR Through Oakside).xlsm] RESIDENTIAL INDUSTRIAL/COMMERCIAL/INSTITUTIONAL LOCATION FLOW CALCULATIONS PIPE DATA MANHOLE DENSITY ACCUM. ACCUM. TOTAL AVG. ACCUM. AVG. PEAKED ACTUAL VELOCITY ACCUM. RESIDENTIAL ACCUM. POPULATION PEAKING TOTAL FULL FLOW FULL FLOW RESIDENTIAL POPULATION EQUIV. POPULATION ACCUM. POPULATION RESIDENTIAL FLOW AREA UNITS INFILTRATION DOMESTIC LENGTH AREA POPULATION STREET PER UNIT PER HA FLOW FLOW FROM то (p/ha) (l/s/ha) (L/s) (L/s) Dallas Street MH28-65 MH28-66 46.3314 3.5 1551.5 12.0 1551.5 0.0 6.5 3.67 24.0 36.0 27.8 250 67.8 1.38 1.39 Dallas Street MH28-66 MH28-67 46.3314 3.5 1551.5 12.0 1551.5 0.0 6.5 3.67 24.0 0.0 36.0 250 0.32 33.6 0.68 0.78 MH28-67 3.5 1551.5 1551.5 0.72 0.82 Dallas Street MH28-9 46.3314 0 0 0 0 0 12.0 0.0 6.5 3.67 24.0 0.0 36.0 61.7 250 0.35 35.2 Dallas Street MH28-9 EXMH28-11 46.3314 3.5 1551.5 0 0 0 12.0 1551.5 0.0 6.5 24.0 36.0 250 27.9 UNDER #VALUE! 0 3.67 0.0 48.3 0.22 Dallas Street EXMH28-11 EXMH28-1: 46.3314 0 3.5 1551.5 0 12.0 1551.5 0.0 6.5 3.67 24.0 0.0 36.0 18.0 250 0.80 53.2 1.08 1.16

Hydraulic Grade Line Analysis 7370 Centre Road

Option 1 - Phase 1 Proposed Development to Oakside Drive Uxbridge, Region of Durham

EL. FROM STREETLINE TO BASEMENT (m)= 1.90 ALLOWABLE DISTANCE FROM BASEMENT TO HGL (m)= 0.50 Project: 7370 Centre Road


Project No. 2099 Date: 26-Feb-21

Designed By: N.D.M.

Reviewed By: S.E.K.

P:2099 7370 Centre Road Uxbridge\DesigniPipe DesigniSanitary\2020 11(Nov) 30 - Sanitary Capacity Sensitivity\Phase 1 MDTR Through Oakside\Storm Design Sheet - (HGL Analysis).xlsm|Design Sheet

LOCATION			INVI	ERTS	FLOW				PIPE I	DATA					PIPE LO	SS CALCUI	LATIONS		MH LOSS C	CALCULATIONS	TOTAL LOSS	Н	YDRAULIC GRADE LIN	NE	HGL '	VS. BASEMI	ENT SEPARA	ATION
STREET	FROM (U/S)	TO (D/S)	U/S	D/S	TOTAL PIPE FLOW (Qdes)		LENGTH	MANNING's 'n'	PIPE AREA	HYD. RAD ^{2/5}	SLOPE	Qcap.	Qdes/Qcap	L/D	f	Vf	$V^2/2g$	TOTAL PIPE LOSS	MH LOSS	PIPE BEND LOSS	TOTAL LOSS	HGL (U/S)	HGL SURCHARGE ABOVE U/S OBV.	HGL (D/S)	MH TOP (U/S)	BASEMENT ELEV. (U/S)	HGL TO BASEMENT (U/S)	СНЕСК
			(m)	(m)	(L/s)	(mm)	(m)		(m2)		(%)	(L/s)	(%)					(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	
Dallas Street	MH28-64	MH28-65	262.307	261.755	36.0	250	80.0	0.013	0.049	0.157	0.69	49.4	0.73	320.120	0.033	0.733	0.027	0.293	0.05	0.00	0.34	263.176	0.619	262.833	267.40	265.50	2.32	OK
Dallas Street	MH28-65	MH28-66	261.731	261.369	36.0	250	27.8	0.013	0.049	0.157	1.30	67.8	0.53	111.320	0.033	0.733	0.027	0.102	0.05	0.00	0.15	262.833	0.852	262.681	265.43	263.53	0.70	OK
Dallas Street	MH28-66	MH28-67	261.304	261.081	36.0	250	69.8	0.013	0.049	0.157	0.32	33.6	1.07	279.120	0.033	0.733	0.027	0.256	0.05	0.00	0.31	262.681	1.126	262.375	265.20	263.30	0.62	OK
Dallas Street	MH28-67	MH28-9	261.079	260.863	36.0	250	61.7	0.013	0.049	0.157	0.35	35.2	1.02	246.600	0.033	0.733	0.027	0.226	0.05	0.00	0.28	262.375	1.046	262.099	265.13	263.23	0.86	OK
Dallas Street	MH28-9	EXMH28-11	260.882	260.776	36.0	250	48.3	0.013	0.049	0.157	0.22	27.9	1.29	193.080	0.033	0.733	0.027	0.177	0.25	0.00	0.43	262.099	0.967	261.672	266.33	264.43	2.33	OK
Dallas Street	EXMH28-11	EXMH28-12	260.750	260.606	36.0	250	18.0	0.013	0.049	0.157	0.80	53.2	0.68	72.000	0.033	0.733	0.027	0.066	0.75	0.00	0.82	261.672	0.672	260.856	266.43	264.53	2.85	OK

OPTION 1 - PHASE 1 PROPOSED DEVELOPMENT TO OAKSIDE DRIVE CAPACITY ANALYSIS

Minimum Velocity (m/s) = 0.60

Mannings n = 0.013

Avg. Domestic Flow (l/cap/day) = 364

Max. Harmon Peaking Factor = 3.8

Min. Harmon Peaking Factor = 1.5

Infiltration Rate (l/s/ha) = 0.26

Sanitary Design Sheet 7370 Centre Road Option 2 - Phase 1 Proposed Development to Mason Lands Phase 2 Uxbridge, Ontario

Project: 7370 Centre Road Project No. 2099 Date: 2-Dec-20

Designed By: N.D.M. Reviewed By: 0

Maximum Velocity (m/s) = 3.65 Minimum Pipe Slope (%) = 0.50 NOMINAL PIPE SIZE USED

LOCATION	- 0.30	1101111		SIZE USED		RESIDEN'	TIAL			IN	DUSTRIA	L/COMMERCIA	AL/INSTITUT	TONAL			1	FLOW CALCU	ILATIONS						PIPE DAT	ΓΑ		
Boomiex	1	*****				1		Ī			1		11,11,1011101	1				I	1			l		$\overline{}$		1		—
STREET	FROM	TO	AREA	ACCUM. AREA	UNITS	PER UNIT	SITY PER HA	RESIDENTIAL POPULATION	ACCUM. RESIDENTIAL POPULATION	AREA	ACCUM. AREA	POPULATION DENSITY	FLOW RATE	ACCUM. EQUIV. POPULATION	INFILTRATION	TOTAL ACCUM. POPULATION	AVG. DOMESTIC FLOW	ACCUM. AVG DOMESTIC FLOW	PEAKING FACTOR	PEAKED RESIDENTIAL FLOW	ICI FLOW	TOTAL FLOW	LENGTH	PIPE DIAMETE	SLOPE SLOPE	FULL FLOW CAPACITY	FULL FLOW VELOCITY	ACTUAL VELOCITY
			(ha)	(ha)	(#)	(p/unit)	(p/ha)			(ha)	(ha)	(p/ha)	(l/s/ha)		(L/s)		(L/s)	(L/s)		(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/s)	(m/s)	(m/s)
7270 G D . L(G'. 1 D 1 D	2	2	6.10	6.10	102	2.5		260.5	260.5						1.6	260.5	1.5	1.5	2.00	5.0	0.0	7.4	220.5			16.1	1.40	1.06
7370 Centre Road (Single Detached)	2	3	6.19	6.19	103	3.5		360.5	360.5	0	0	0	0	0	1.6	360.5	1.5	1.5	3.80	5.8	0.0	7.4	330.5	200	2.00	46.4	1.48	1.06
Mason Phase 2	3	MH11-1A	12.8	18.99	200	4	62.5	800	1160.5	0	0	0	0	0	4.9	1160.5	3.4	4.9	3.76	18.4	0.0	23.3	9.3	200	2.00	46.4	1.48	1.48
Oakside Drive	MH21A	MH20A	0.54	0.54	6	3.5	38.9	21	21	0	0	0	0	0	0.1	21	0.1	0.1	3.80	0.3	0.0	0.5	49.0	200	2.00	46.4	1.48	0.47
Oakside Drive	MH20A	MH19A	0.813	1.353	11	3.5454545	48.0	39	60	0	0	0	0	0	0.4	60	0.2	0.3	3.80	1.0	0.0	1.3	94.5	200	1.10	34.4	1.09	0.52
Oakside Drive	MH19A	MH18A	0.595	1.948	8	3.5	47.1	28	88	0	0	0	0	0	0.5	88	0.1	0.4	3.80	1.4	0.0	1.9	67.3	200	0.60	25.4	0.81	0.47
Oakside Drive	MH18A	MH17A	0.64	2.588	8	3.5	43.8	28	116	0	0	0	0	0	0.7	116	0.1	0.5	3.80	1.9	0.0	2.5	69.0	200	0.60	25.4	0.81	0.51
Oakside Drive	MH17A	MH16A	0.474	3.062	5	3.6	38.0	18	134	0	0	0	0	0	0.8	134	0.1	0.6	3.80	2.1	0.0	2.9	67.4	200	1.92	45.4	1.45	0.81
Oakside Drive	MH16A	MH15A	0.815	3.877	13	3.4615385	55.2	45	179	0	0	0	0	0	1.0	179	0.2	0.8	3.80	2.9	0.0	3.9	94.7	200	3.68	62.9	2.00	1.08
Oakside Drive	MH15A	MH14A	0.612	4.489	12	3.3333333	65.4	40	219	0	0	0	0	0	1.2	219	0.2	0.9	3.80	3.5	0.0	4.7	82.0	200	2.93	56.1	1.79	1.07
Oakside Drive	MH14A	MH13A	0.789	5.278	15	3.3333333	63.4	50	269	0	0	0	0	0	1.4	269	0.2	1.1	3.80	4.3	0.0	5.7	95.8	200	1.24	36.5	1.16	0.83
Oakside Drive	MH13A	MH12A	0.22	5.498	2	3.5	31.8	7	276	0	0	0	0	0	1.4	276	0.0	1.2	3.80	4.4	0.0	5.8	13.7	200	2.48	51.6	1.64	1.07
Oakside Drive	MH12A	MH11A	0.378	5.876	5	3.6	47.6	18	294	0	0	0	0	0	1.5	294	0.1	1.2	3.80	4.7	0.0	6.2	64.3	200	0.47	22.5	0.72	0.61
																								1	1			
Apple Tree Crescent	MH11-5A	MH11-4A	0.564	0.564	9	3.5555556	56.7	32	32	0	0	0	0	0	0.1	32	0.1	0.1	3.80	0.5	0.0	0.7	76.7	200	3.02	57.0	1.81	0.58
Apple Tree Crescent	MH11-4A	MH11-3A	0	0.564	0			0	32	0	0	0	0	0	0.1	32	0.0	0.1	3.80	0.5	0.0	0.7	36.2	200	1.80	44.0	1.40	0.49
Apple Tree Crescent	MH11-3A	MH11-2A	0.43	0.994	6	3.5	48.8	21	53	0	0	0	0	0	0.3	53	0.1	0.2	3.80	0.8	0.0	1.1	86.9	200	3.40	60.4	1.92	0.72
Apple Tree Crescent	MH11-2A	MH11-1A	0.448	1.442	10	3.2	71.4	32	85	0	0	0	0	0	0.4	85	0.1	0.4	3.80	1.4	0.0	1.7	93.2	200	1.65	42.1	1.34	0.63
Apple Tree Crescent	MH11-1A	MH11A	0.622	21.054	16	3.25	83.6	52	1297.5	0	0	0	0	0	5.5	1297.5	0.2	5.5	3.72	20.4	0.0	25.8	96.8	250	0.43	39.0	0.79	0.85
11																								1	+			1
Oakside Drive	MH11A	MH10A	0.088	27.018	1	4	45.5	4	1595.5	0	0	0	0	0	7.0	1595.5	0.0	6.7	3.66	24.6	0.0	31.6	29.8	250	0.47	40.7	0.83	0.92
Oakside Drive	MH10A	MHAH14-001	0.33	27.348	5	3.6	54.5	18	1613.5	0	0	0	0	0	7.1	1613.5	0.1	6.8	3.66	24.9	0.0	32.0	39.5	250	0.46	40.3	0.82	0.91
Oakside Drive	МНАН14-001	MHAH14-001	0.335	27.683	5	3.6	53.7	18	1631.5	0	0	0	0	0	7.2	1631.5	0.1	6.9	3.65	25.1	0.0	32.3	46.7	250	0.60	46.0	0.94	1.01
Oakside Drive	МНАН14-001	MHAH14-001	0.638	0.638	10	3.5	54.9	35	35	0	0	0	0	0	0.2	35	0.1	0.1	3.80	0.6	0.0	0.7	78.1	200	1.00	32.8	1.04	0.42
Ash Green Lane	МНАН14-001	MH7A	0.098	28.419	0			0	1666.5	0	0	0	0	0	7.4	1666.5	0.0	7.0	3.65	25.6	0.0	33.0	37.0	250	0.49	41.6	0.85	0.94
Ash Green Lane	MH7A	MH6A	0	28.419	0			0	1666.5	0	0	0	0	0	7.4	1666.5	0.0	7.0	3.65	25.6	0.0	33.0	26.3	250	0.65	47.9	0.98	1.05
Future Block 110	A5a	MH6A	1.151	1.151	14	4.2857143	52.1	60	60	0	0	0	0	0	0.3	60	0.3	0.3	3.80	1.0	0.0	1.3	12.7	250	0.55	44.1	0.90	0.38
Ash Green Lane	MH6A	MH5A	0.871	30.441	13	3.5384615	52.8	46	1772.5	0	0	0	0	0	7.9	1772.5	0.2	7.5	3.63	27.1	0.0	35.0	108.2	250	0.48	41.2	0.84	0.94
Ash Green Lane	MH5A	MH4A	0.28	30.721	3	3.6666667	39.3	11	1783.5	0	0	0	0	0	8.0	1783.5	0.0	7.5	3.62	27.2	0.0	35.2	18.2	250	0.50	42.0	0.86	0.96
Ash Green Lane	MH4A	МН3А	0.284	31.005	3	3.6666667	38.7	11	1794.5	0	0	0	0	0	8.1	1794.5	0.0	7.6	3.62	27.4	0.0	35.4	59.5	250	0.50	42.0	0.86	0.96
Ash Green Lane	МН3А	MH2A	0	31.005	0			0	1794.5	0	0	0	0	0	8.1	1794.5	0.0	7.6	3.62	27.4	0.0	35.4	17.7	250	0.62	46.8	0.95	1.05
Ash Green Lane	MH2A	MH1A	0.59	31.595	5	3.6	30.5	18	1812.5	0	0	0	0	0	8.2	1812.5	0.1	7.6	3.62	27.6	0.0	35.8	94.5	250	0.40	37.6	0.77	0.87
Ash Green Lane		EXMH28-61	0	31.595	0			0	1812.5	0	0	0	0	0	8.2	1812.5	0.0	7.6	3.62	27.6	0.0	35.8	20.6	250	0.50	42.0	0.86	0.96
North Street	EXMH28-61		0.7899	32.3849	5	3.5	22.2	17.5	1830	0	0	0	0	0	8.4	1830	0.1	7.7	3.62	27.9	0.0	36.3	76.0	250	0.50	42.0	0.86	0.96
								†	†					1										+	+			
North Street	MHS22	MHS21	1.3566	1.3566	10	3.5	25.8	35	35	0	0	0	0	0	0.4	35	0.1	0.1	3.80	0.6	0.0	0.9	110.0	200	1.00	32.8	1.04	0.44
North Street	MHS21	MHS20	1.228	2.5846	8	3.5	22.8	28	63	0	0	0	0	0	0.7	63	0.1	0.3	3.80	1.0	0.0	1.7	110.0	200	0.50	23.2	0.74	0.43
North Street	MHS20	MHS19	1.1447	3.7293	7	3.5	21.4	24.5	87.5	0	0	0	0	0	1.0	87.5	0.1	0.4	3.80	1.4	0.0	2.4	110.0	200	0.90	31.1	0.99	0.57
North Street	MHS19	MHS18	0.3657	4.095	2	3.5	19.1	7	94.5	0	0	0	0	0	1.1	94.5	0.0	0.4	3.80	1.5	0.0	2.6	35.0	200	1.80	44.0	1.40	0.75
North Street	MHS18	MHS17	1.2374	5.3324	8	3.5	22.6	28	122.5	0	0	0	0	0	1.4	122.5	0.1	0.5	3.80	2.0	0.0	3.3	110.0	200	2.00	46.4	1.48	0.85
North Street	MHS17	MHS16	1.2162	6.5486	8	3.5	23.0	28	150.5	0	0	0	0	0	1.7	150.5	0.1	0.6	3.80	2.4	0.0	4.1	110.0	200	1.00	32.8	1.04	0.70
North Street	MHS16	EXMH28-60	1.2226	7.7712	8	3.5	22.9	28	178.5	0	0	0	0	0	2.0	178.5	0.1	0.8	3.80	2.9	0.0	4.9	110.0	200	1.00	32.8	1.04	0.75
Second Street	EXMH28-60	MH28-73	0.1753	40.3314	1	3.5	20.0	3.5	2012	0	0	0	0	0	10.5	2012	0.0	8.5	3.58	30.4	0.0	40.9	69.8	250	0.71	50.1	1.02	1.13

Minimum Velocity (m/s) = 0.60 Maximum Velocity (m/s) = 3.65

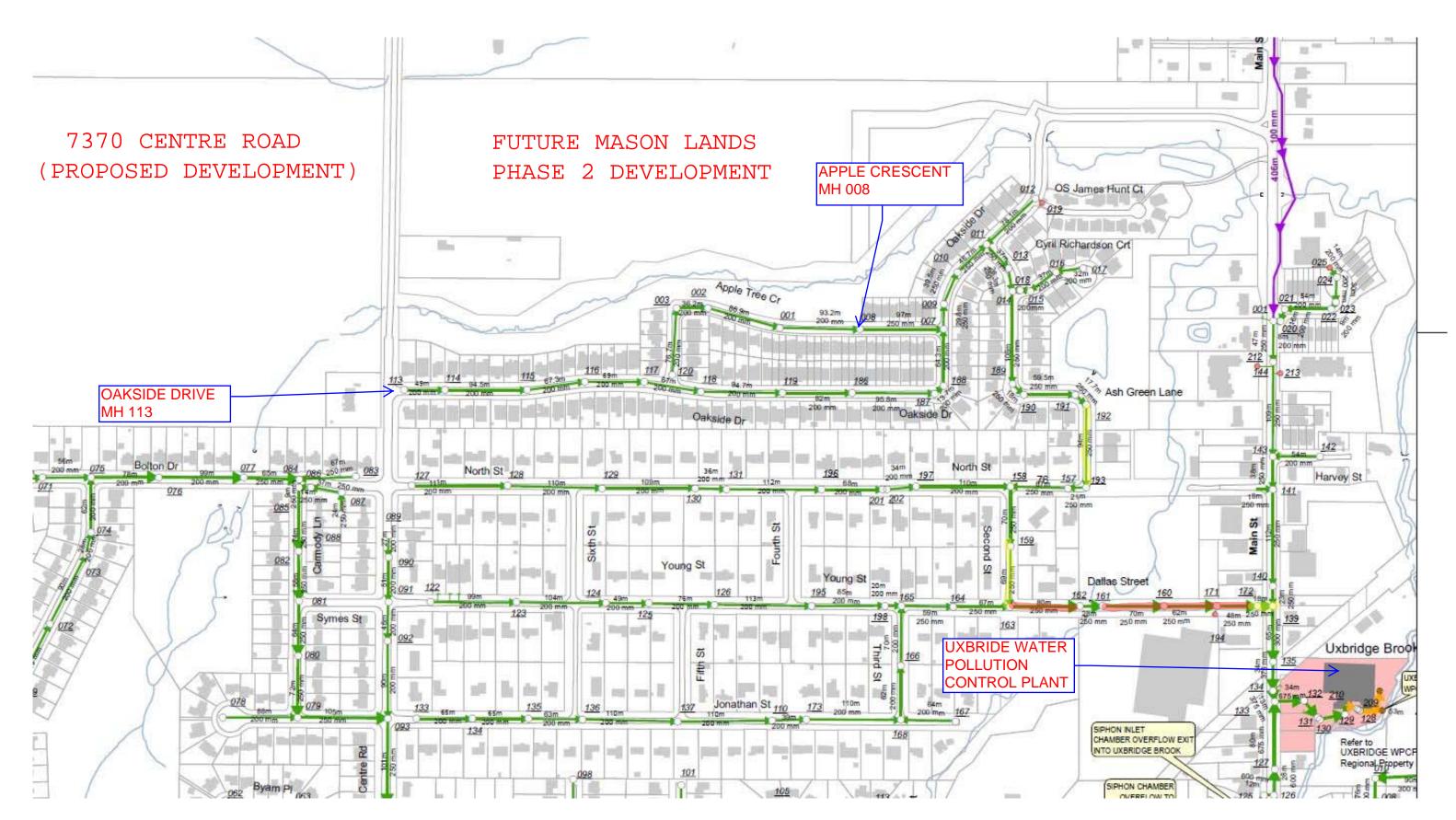
Mannings n = 0.013

Avg. Domestic Flow (l/cap/day) = 364

Max. Harmon Peaking Factor = 3.8

Min. Harmon Peaking Factor = 1.5

Infiltration Rate (l/s/ha) = 0.26


Sanitary Design Sheet 7370 Centre Road Option 2 - Phase 1 Proposed Development to Mason Lands Phase 2 Uxbridge, Ontario

Project: 7370 Centre Road Project No. 2099

Date: 2-Dec-20 Designed By: N.D.M.

Reviewed By: 0

Minimum Pipe Slope (%)	= 0.50	NOMI	INAL PIPE	SIZE USED														P:\2099 7370 C	entre Road Uxbridge	e\Design\Pipe Design\Sanita	ary\2020 11(Nov) 30 - Sa	nitary Capacity Sensitivity	Phase 1 MDTR Through	Oakside\[2099-Sani	ary Design Sheet (Pl	hase 1 MDTR Through	a Oakside).xlsm]Desig	д 8
LOCATION						RESIDEN	TIAL			IN	DUSTRIAI	/COMMERCI	AL/INSTITU	TIONAL			F	LOW CALCU	LATIONS						PIPE DATA	A		
	MAN	NHOLE	, DE 4	ACCUM.	VID.IVEDO	DEN	ISITY	RESIDENTIAL	ACCUM.	, pr.	ACCUM.	POPULATION	FLOW	ACCUM.	INTER TO A THOM	TOTAL	AVG.	ACCUM. AVG.	PEAKING	PEAKED	ICI	TOTAL	V PNOTW	PIPE	CI ONE	FULL FLOW	FULL FLOW	ACTUAL
STREET	FROM	то	AREA	AREA	UNITS	PER UNIT	PER HA		RESIDENTIAL POPULATION		AREA	DENSITY	RATE	EQUIV. POPULATION	INFILTRATION	ACCUM. POPULATION	DOMESTIC FLOW	DOMESTIC FLOW	FACTOR	RESIDENTIAL FLOW	FLOW	FLOW	LENGTH	DIAMETER	SLOPE	CAPACITY	VELOCITY	VELOCITY
			(ha)	(ha)	(#)	(p/unit)	(p/ha)			(ha)	(ha)	(p/ha)	(l/s/ha)		(L/s)		(L/s)	(L/s)		(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/s)	(m/s)	(m/s)
Second Street	MH28-73	MH28-64	0	40.3314	0	3.5		0	2012	0	0	0	0	0	10.5	2012	0.0	8.5	3.58	30.4	0.0	40.9	69.5	250	0.50	42.0	0.86	0.98
Dallas Street	MH28-64	MH28-65	18.8	59.1314	97	3.5	18.1	339.5	2351.5	0	0	0	0	0	15.4	2351.5	1.4	9.9	3.53	35.0	0.0	50.3	80.0	250	0.69	49.4	1.01	1.15
Dallas Street	MH28-65	MH28-66	0	59.1314	0	3.5		0	2351.5	0	0	0	0	0	15.4	2351.5	0.0	9.9	3.53	35.0	0.0	50.3	27.8	250	1.30	67.8	1.38	1.51
Dallas Street	MH28-66	MH28-67	0	59.1314	0	3.5		0	2351.5	0	0	0	0	0	15.4	2351.5	0.0	9.9	3.53	35.0	0.0	50.3	69.8	250	0.32	33.6	0.68	0.78
Dallas Street	MH28-67	MH28-9	0	59.1314	0	3.5		0	2351.5	0	0	0	0	0	15.4	2351.5	0.0	9.9	3.53	35.0	0.0	50.3	61.7	250	0.35	35.2	0.72	0.82
Dallas Street	MH28-9	EXMH28-11	0	59.1314	0	3.5		0	2351.5	0	0	0	0	0	15.4	2351.5	0.0	9.9	3.53	35.0	0.0	50.3	48.3	250	0.22	27.9	UNDER	#VALUE
Dallas Street	EXMH28-11	EXMH28-12	0	59.1314	0	3.5		0	2351.5	0	0	0	0	0	15.4	2351.5	0.0	9.9	3.53	35.0	0.0	50.3	18.0	250	0.80	53.2	1.08	1.23

OPTION 2 - PHASE 1 PROPOSED DEVELOPMENT TO MASON LANDS PHASE 2 CAPACITY ANALYSIS

Sanitary Design Sheet 7370 Centre Road Option 3 - Ultimate Proposed Development to Oakside Drive Uxbridge, Ontario

Project: 7370 Centre Road Project No. 2099 Date: 2-Dec-20

Designed By: N.D.M.

Reviewed By: 0

O Course Road I bloodded Design Price Design (Sunitary O'070 I I I/Nova 3 to . Sunitary Conscirus Sensitivity) Illimate MDTP. Through Obloided (2000 Sunitary Design Short / Illimate MDTP Through (2000 Sunitary Design Short / Illimate MDTP Through (2000 Sunitary Design Short / Illimate MDTP Through (2000 Sunitary Design S

Minimum Sewer Diameter (mm) = 200 Avg. Domestic Flow (l/cap/day) = 364

Mannings n = 0.013 Infiltration Rate (l/s/ha) = 0.26

Minimum Velocity (m/s) = 0.60 Max. Harmon Peaking Factor = 3.8

Maximum Velocity (m/s) = 3.65 Min. Harmon Peaking Factor = 1.5

Minimum Pipe Slope (%) = 0.50 NOMINAL PIPE SIZE USED

LOCATION	- 0.30	110111		SIZE USED		RESIDEN	TIAL			IN	DUSTRIAI	L/COMMERCI.	AL/INSTITUT	TIONAL			I	FLOW CALCU	LATIONS					I	PIPE DATA	<u> </u>		
	MAN	HOLE				1	SITY									mom. v												
STREET	FROM	то	AREA	ACCUM. AREA	UNITS	PER UNIT	PER HA	RESIDENTIAL POPULATION	ACCUM. RESIDENTIAL POPULATION	AREA	ACCUM. AREA	POPULATION DENSITY	FLOW RATE	ACCUM. EQUIV. POPULATION	INFILTRATION	TOTAL ACCUM. POPULATION	AVG. DOMESTIC FLOW	ACCUM. AVG. DOMESTIC FLOW	PEAKING FACTOR	PEAKED RESIDENTIAL FLOW	ICI FLOW	TOTAL FLOW	LENGTH	PIPE DIAMETER	SLOPE	FULL FLOW CAPACITY	FULL FLOW VELOCITY	ACTUAL VELOCITY
	rkom	10	(ha)	(ha)	(#)	(p/unit)	(p/ha)			(ha)	(ha)	(p/ha)	(l/s/ha)		(L/s)		(L/s)	(L/s)		(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/s)	(m/s)	(m/s)
7370 Centre Road (Townhouse)	1	2	0	0	69	3		207	207	0	0	0	0	0	0.0	207	0.9	0.9	3.80	3.3	0.0	3.3	141.1	200	0.50	23.2	0.74	0.52
7370 Centre Road (Single Detached)	2	MH21A	31.81	31.81	521	3.5		1823.5	2030.5	0	0	0	0	0	8.3	2030.5	7.7	8.6	3.58	30.6	0.0	38.9	791.0	200	2.00	46.4	1.48	1.65
	1.0774	2 57720					***		2071.7								0.4	0.6	2.50	***			40.0	***	• • • •	46.4	<u> </u>	1.53
Oakside Drive	MH21A	MH20A	0.54	32.35	6	3.5	38.9	21	2051.5	0	0	0	0	0	8.4	2051.5	0.1	8.6	3.58	30.9	0.0	39.3	49.0	200	2.00	46.4	1.48	1.65
Oakside Drive	MH20A MH19A	MH19A	0.813	33.163	8	3.5454545	48.0	39	2090.5	0	0	0	0	0	8.6	2090.5	0.2	8.8	3.57	31.4	0.0	40.1	94.5	200	1.10	34.4	1.09 0.81	1.25 0.92
Oakside Drive Oakside Drive	MH19A MH18A	MH18A MH17A	0.595	33.758 34.398	8	3.5	47.1 43.8	28	2118.5 2146.5	0	0	0	0	0	8.8 8.9	2118.5 2146.5	0.1	8.9 9.0	3.57 3.56	31.8 32.2	0.0	40.6	67.3 69.0	200	0.60	25.4 25.4	0.81	0.92
Oakside Drive	MH17A	MH16A	0.474	34.872	5	3.6	38.0	18	2164.5	0	0	0	0	0	9.1	2164.5	0.1	9.1	3.56	32.5	0.0	41.5	67.4	200	1.92	45.4	1.45	1.64
Oakside Drive	MH16A	MH15A	0.815	35.687	13	3.4615385	55.2	45	2209.5	0	0	0	0	0	9.3	2209.5	0.2	9.3	3.55	33.1	0.0	42.3	94.7	200	3.68	62.9	2.00	2.15
Oakside Drive	MH15A	MH14A	0.612	36.299	12	3.3333333	65.4	40	2249.5	0	0	0	0	0	9.4	2249.5	0.2	9.5	3.55	33.6	0.0	43.0	82.0	200	2.93	56.1	1.79	1.96
Oakside Drive	MH14A	MH13A	0.789	37.088	15	3.3333333	63.4	50	2299.5	0	0	0	0	0	9.6	2299.5	0.2	9.7	3.54	34.3	0.0	43.9	95.8	200	1.24	36.5	1.16	1.32
Oakside Drive	MH13A	MH12A	0.22	37.308	2	3.5	31.8	7	2306.5	0	0	0	0	0	9.7	2306.5	0.0	9.7	3.54	34.4	0.0	44.1	13.7	200	2.48	51.6	1.64	1.85
Oakside Drive	MH12A	MH11A	0.378	37.686	5	3.6	47.6	18	2324.5	0	0	0	0	0	9.8	2324.5	0.1	9.8	3.53	34.6	0.0	44.4	64.3	200	0.47	22.5	0.72	0.82
																											i	
Apple Tree Crescent	MH11-5A	MH11-4A	0.564	0.564	9	3.5555556	56.7	32	32	0	0	0	0	0	0.1	32	0.1	0.1	3.80	0.5	0.0	0.7	76.7	200	3.02	57.0	1.81	0.58
Apple Tree Crescent	MH11-4A	MH11-3A	0	0.564	0			0	32	0	0	0	0	0	0.1	32	0.0	0.1	3.80	0.5	0.0	0.7	36.2	200	1.80	44.0	1.40	0.49
Apple Tree Crescent	MH11-3A	MH11-2A	0.43	0.994	6	3.5	48.8	21	53	0	0	0	0	0	0.3	53	0.1	0.2	3.80	0.8	0.0	1.1	86.9	200	3.40	60.4	1.92	0.72
Apple Tree Crescent	MH11-2A	MH11-1A	0.448	1.442	10	3.2	71.4	32	85	0	0	0	0	0	0.4	85	0.1	0.4	3.80	1.4	0.0	1.7	93.2	200	1.65	42.1	1.34	0.63
Apple Tree Crescent	MH11-1A	MH11A	0.622	2.064	16	3.25	83.6	52	137	0	0	0	0	0	0.5	137	0.2	0.6	3.80	2.2	0.0	2.7	96.8	250	0.43	39.0	0.79	0.44
																											<u> </u>	
Oakside Drive	MH11A	MH10A	0.088	39.838	1	4	45.5	4	2465.5	0	0	0	0	0	10.4	2465.5	0.0	10.4	3.51	36.5	0.0	46.9	29.8	250	0.47	40.7	0.83	0.95
Oakside Drive	MH10A	MHAH14-001	0.33	40.168	5	3.6	54.5	18	2483.5	0	0	0	0	0	10.4	2483.5	0.1	10.5	3.51	36.7	0.0	47.2	39.5	250	0.46	40.3	0.82	0.94
Oakside Drive	МНАН14-001		0.335	40.503	5	3.6	53.7	18	2501.5	0	0	0	0	0	10.5	2501.5	0.1	10.5	3.51	37.0	0.0	47.5	46.7	250	0.60	46.0	0.94	1.07
Oakside Drive	MHAH14-001		0.638	0.638	10	3.5	54.9	35	35 2536.5	0	0	0	0	0	0.2	35 2536.5	0.1	0.1	3.80	0.6 37.4	0.0	0.7	78.1	200	1.00	32.8	1.04	0.42
Ash Green Lane	MHAH14-001 MH7A	MH/A MH6A	0.098	41.239 41.239	0			0	2536.5	0	0	0	0	0	10.7 10.7	2536.5	0.0	10.7	3.50 3.50	37.4	0.0	48.2 48.2	37.0	250 250	0.49	41.6 47.9	0.85 0.98	0.97 1.11
Ash Green Lane Future Block 110	A5a	MH6A	1.151	1.151	14	4.2857143	52.1	60	60	0	0	0	0	0	0.3	60	0.0	0.3	3.80	1.0	0.0	1.3	26.3 12.7	250	0.65	44.1	0.98	0.38
Ash Green Lane	MH6A	MH5A	0.871	43.261	13	3.5384615	52.8	46	2642.5	0	0	0	0	0	11.2	2642.5	0.2	11.1	3.49	38.8	0.0	50.1	108.2	250	0.48	41.2	0.84	0.96
Ash Green Lane	MH5A	MH4A	0.28	43.541	3	3.6666667	39.3	11	2653.5	0	0	0	0	0	11.3	2653.5	0.0	11.2	3.49	39.0	0.0	50.3	18.2	250	0.50	42.0	0.86	0.98
Ash Green Lane	MH4A	MH3A	0.284	43.825	3	3.6666667	38.7	11	2664.5	0	0	0	0	0	11.4	2664.5	0.0	11.2	3.49	39.1	0.0	50.5	59.5	250	0.50	42.0	0.86	0.98
Ash Green Lane	MH3A	MH2A	0	43.825	0			0	2664.5	0	0	0	0	0	11.4	2664.5	0.0	11.2	3.49	39.1	0.0	50.5	17.7	250	0.62	46.8	0.95	1.09
Ash Green Lane	MH2A	MH1A	0.59	44.415	5	3.6	30.5	18	2682.5	0	0	0	0	0	11.5	2682.5	0.1	11.3	3.48	39.4	0.0	50.9	94.5	250	0.40	37.6	0.77	0.87
Ash Green Lane	MH1A	EXMH28-61	0	44.415	0			0	2682.5	0	0	0	0	0	11.5	2682.5	0.0	11.3	3.48	39.4	0.0	50.9	20.6	250	0.50	42.0	0.86	0.98
North Street	EXMH28-61	EXMH28-60	0.7899	45.2049	5	3.5	22.2	17.5	2700	0	0	0	0	0	11.8	2700	0.1	11.4	3.48	39.6	0.0	51.3	76.0	250	0.50	42.0	0.86	0.98
																											1	
North Street	MHS22	MHS21	1.3566	1.3566	10	3.5	25.8	35	35	0	0	0	0	0	0.4	35	0.1	0.1	3.80	0.6	0.0	0.9	110.0	200	1.00	32.8	1.04	0.44
North Street	MHS21	MHS20	1.228	2.5846	8	3.5	22.8	28	63	0	0	0	0	0	0.7	63	0.1	0.3	3.80	1.0	0.0	1.7	110.0	200	0.50	23.2	0.74	0.43
North Street	MHS20	MHS19	1.1447	3.7293	7	3.5	21.4	24.5	87.5	0	0	0	0	0	1.0	87.5	0.1	0.4	3.80	1.4	0.0	2.4	110.0	200	0.90	31.1	0.99	0.57
North Street	MHS19	MHS18	0.3657	4.095	2	3.5	19.1	7	94.5	0	0	0	0	0	1.1	94.5	0.0	0.4	3.80	1.5	0.0	2.6	35.0	200	1.80	44.0	1.40	0.75
North Street	MHS18	MHS17	1.2374	5.3324	8	3.5	22.6	28	122.5	0	0	0	0	0	1.4	122.5	0.1	0.5	3.80	2.0	0.0	3.3	110.0	200	2.00	46.4	1.48	0.85
North Street	MHS17	MHS16	1.2162	6.5486	8	3.5	23.0	28	150.5	0	0	0	0	0	1.7	150.5	0.1	0.6	3.80	2.4	0.0	4.1	110.0	200	1.00	32.8	1.04	0.70
North Street	MHS16	EXMH28-60	1.2226	7.7712	8	3.5	22.9	28	178.5	0	0	0	0	0	2.0	178.5	0.1	0.8	3.80	2.9	0.0	4.9	110.0	200	1.00	32.8	1.04	0.75
Second Street	EXMH28-60		0.1753	53.1514	1	3.5	20.0	3.5	2882	0	0	0	0	0	13.8	2882	0.0	12.1	3.46	42.0	0.0	55.8	69.8	250	0.71	50.1	1.02	1.16
Second Street	MH28-73	MH28-64	0	53.1514	0	3.5		0	2882	0	0	0	0	0	13.8	2882	0.0	12.1	3.46	42.0	0.0	55.8	69.5	250	0.50	42.0	0.86	0.98

Minimum Velocity (m/s) = 0.60 Maximum Velocity (m/s) = 3.65

Mannings n = 0.013

Avg. Domestic Flow (l/cap/day) = 364

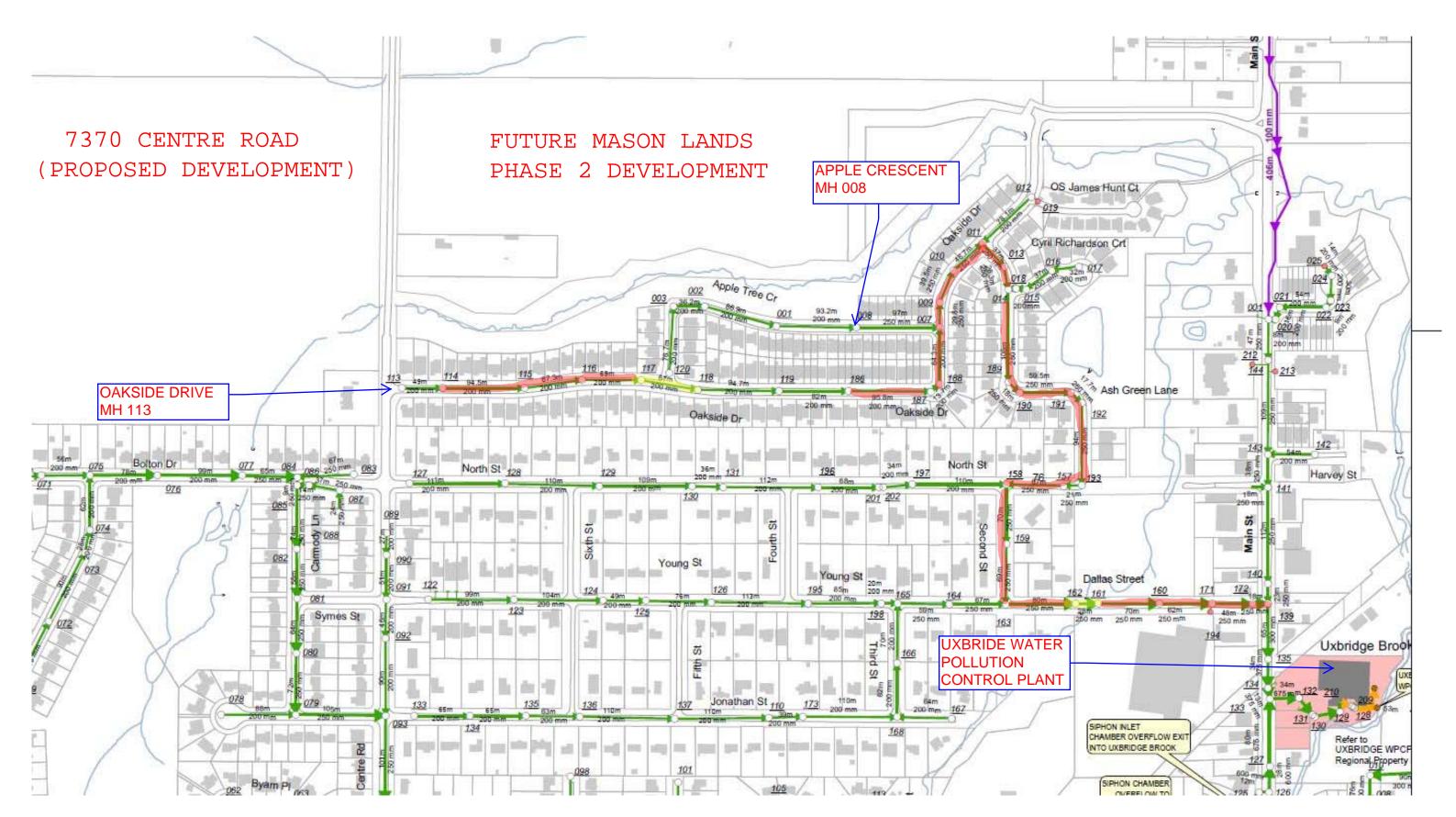
Max. Harmon Peaking Factor = 3.8

Min. Harmon Peaking Factor = 1.5

Infiltration Rate (l/s/ha) = 0.26

Sanitary Design Sheet 7370 Centre Road Option 3 - Ultimate Proposed Development to Oakside Drive Uxbridge, Ontario

Project: 7370 Centre Road


Project No. 2099 Date: 2-Dec-20

Designed By: N.D.M.

Reviewed By: 0

Reviewed By: 0

Minimum Pipe Slope (%) =	= 0.50	NOMI	NAL PIPE	SIZE USED														P:\2099 7370 Cer	tre Road Uxbridge\I	Design\Pipe Design\Sanitary\	2020 11(Nov) 30 - Sanit	ary Capacity Sensitivity\U	Itimate MDTR Through	Jakside\[2099-Sanitr	ary Design Sheet (U	Ultimate MDTR Through	n Oakside).xlsm]Desig	_{jn} Ö
LOCATION						RESIDEN	TIAL			IN	DUSTRIAL	/COMMERCIA	L/INSTITUT	TONAL			F	LOW CALCU	LATIONS						PIPE DAT	ſΑ		
	MAN	HOLE		ACCUM.	VINITEO .	DEN	SITY	RESIDENTIAL	ACCUM.	, DE .	ACCUM.	POPULATION	FLOW	ACCUM.	NEW TO LEVON	TOTAL	AVG.	ACCUM. AVG.	PEAKING	PEAKED	ICI	TOTAL	A PANCERY	PIPE	CI ODE	FULL FLOW	FULL FLOW	V ACTUAL
STREET	FROM	то	AREA	AREA	UNITS	PER UNIT	PER HA	POPULATION	RESIDENTIAL POPULATION	AREA	AREA	DENSITY	RATE	EQUIV. POPULATION	INFILTRATION	ACCUM. POPULATION	DOMESTIC FLOW	DOMESTIC FLOW	FACTOR	RESIDENTIAL FLOW	FLOW	FLOW	LENGTH	DIAMETER	SLOPE	CAPACITY	VELOCITY	VELOCITY
			(ha)	(ha)	(#)	(p/unit)	(p/ha)			(ha)	(ha)	(p/ha)	(l/s/ha)		(L/s)		(L/s)	(L/s)		(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/s)	(m/s)	(m/s)
Dallas Street	MH28-64	MH28-65	18.8	71.9514	97	3.5	18.1	339.5	3221.5	0	0	0	0	0	18.7	3221.5	1.4	13.6	3.42	46.4	0.0	65.1	80.0	250	0.69	49.4	1.01	1.15
Dallas Street	MH28-65	MH28-66	0	71.9514	0	3.5		0	3221.5	0	0	0	0	0	18.7	3221.5	0.0	13.6	3.42	46.4	0.0	65.1	27.8	250	1.30	67.8	1.38	1.57
Dallas Street	MH28-66	MH28-67	0	71.9514	0	3.5		0	3221.5	0	0	0	0	0	18.7	3221.5	0.0	13.6	3.42	46.4	0.0	65.1	69.8	250	0.32	33.6	0.68	0.78
Dallas Street	MH28-67	MH28-9	0	71.9514	0	3.5		0	3221.5	0	0	0	0	0	18.7	3221.5	0.0	13.6	3.42	46.4	0.0	65.1	61.7	250	0.35	35.2	0.72	0.82
Dallas Street	MH28-9	EXMH28-11	0	71.9514	0	3.5		0	3221.5	0	0	0	0	0	18.7	3221.5	0.0	13.6	3.42	46.4	0.0	65.1	48.3	250	0.22	27.9	UNDER	#VALUE!
Dallas Street	EXMH28-11	EXMH28-12	0	71.9514	0	3.5		0	3221.5	0	0	0	0	0	18.7	3221.5	0.0	13.6	3.42	46.4	0.0	65.1	18.0	250	0.80	53.2	1.08	1.23
													•															

OPTION 3 - ULTIMATE PROPOSED DEVELOPMENT TO OAKSIDE DRIVE CAPACITY ANALYSIS

Minimum Velocity (m/s) = 0.60

Mannings n = 0.013

Avg. Domestic Flow (l/cap/day) = 364

Max. Harmon Peaking Factor = 3.8

Infiltration Rate (l/s/ha) = 0.26

Sanitary Design Sheet 7370 Centre Road **Option 4 - Ultimate Proposed Development to Mason Lands Phase 2** Uxbridge, Ontario

Project: 7370 Centre Road Project No. 2099 Date: 2-Dec-20

Designed By: N.D.M.

Reviewed By: 0

Maximum Velocity (m/s) = 3.65 Min. Harmon Peaking Factor = 1.5 P:\2099 7370 Centre Road Uxbridge\Design\Pipe Design\Sanitary\2020 11(Nov) 30 - Sanitary Capacity Sensitivity\Ultim NOMINAL PIPE SIZE USED

Minimum Pipe Slope (%) =	= 0.50	NOMI	NAL PIPE	SIZE USED													P:\2	099 7370 Centre Road Uxl	bridge\Design\Pipe De	sign\Sanitary\2020 11(Nov) 30 - Sanitary Capacity	Sensitivity\Ultimate MDTI	R Through Mason Pha	se 2\[2099-Sanitary De	sign Sheet (Ultimate	MDTR Through Maso	on Phase 2).xlsm]Design	д 00
LOCATION						RESIDEN	TIAL			IN	DUSTRIAL	/COMMERCIA	AL/INSTITUT	TONAL			F	LOW CALCU	LATIONS						PIPE DATA	A		
	MAN	HOLE	AREA	ACCUM.	UNITS	DEN	SITY	RESIDENTIAL	ACCUM. RESIDENTIAL	AREA	ACCUM.	POPULATION	FLOW	ACCUM. EQUIV.	INFILTRATION	TOTAL ACCUM,	AVG. DOMESTIC	ACCUM. AVG. DOMESTIC	PEAKING	PEAKED RESIDENTIAL	ICI	TOTAL	LENGTH	PIPE	SLOPE		v FULL FLOW	
STREET	FROM	то	AKEA	AREA	UNIIS	PER UNIT	PER HA	POPULATION	POPULATION	AKEA	AREA	DENSITY	RATE	POPULATION	INFILIRATION	POPULATION	FLOW	FLOW	FACTOR	FLOW	FLOW	FLOW	LENGIII	DIAMETER	SLOTE	CAPACITY	VELOCITY	VELOCITY
			(ha)	(ha)	(#)	(p/unit)	(p/ha)			(ha)	(ha)	(p/ha)	(l/s/ha)		(L/s)		(L/s)	(L/s)		(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/s)	(m/s)	(m/s)
7370 Centre Road (Townhouse)	1	2	0	0	69	3		207	207	0	0	0	0	0	0.0	207	0.9	0.9	3.80	3.3	0.0	3.3	141.1	200	0.50	23.2	0.74	0.52
7370 Centre Road (Single Detached)	2	3	31.81	31.81	521	3.5		1823.5	2030.5	0	0	0	0	0	8.3	2030.5	7.7	8.6	3.58	30.6	0.0	38.9	791.0	200	2.00	46.4	1.48	1.65
, , ,																								+		<u> </u>	1	
Mason Phase 2	3	MH11-1A	12.8	44.61	200	4	62.5	800	2830.5	0	0	0	0	0	11.6	2830.5	3.4	11.9	3.46	41.3	0.0	52.9	9.3	250	2.00	84.1	1.71	1.80
Oakside Drive	MH21A	MH20A	0.54	0.54	6	3.5	38.9	21	21	0	0	0	0	0	0.1	21	0.1	0.1	3.80	0.3	0.0	0.5	49.0	200	2.00	46.4	1.48	0.47
Oakside Drive	MH20A	MH20A MH19A	0.54 0.813	1.353	11	3.5454545	48.0	39	60	0	0	0	0	0	0.1	60	0.1	0.1	3.80	1.0	0.0	1.3	94.5	200	1.10	34.4	1.48	0.47
Oakside Drive	MH19A	MH18A	0.595	1.948	8	3.5	47.1	28	88	0	0	0	0	0	0.5	88	0.1	0.4	3.80	1.4	0.0	1.9	67.3	200	0.60	25.4	0.81	0.32
Oakside Drive	MH18A	MH17A	0.64	2.588	8	3.5	43.8	28	116	0	0	0	0	0	0.7	116	0.1	0.5	3.80	1.9	0.0	2.5	69.0	200	0.60	25.4	0.81	0.51
Oakside Drive	MH17A	MH16A	0.474	3.062	5	3.6	38.0	18	134	0	0	0	0	0	0.8	134	0.1	0.6	3.80	2.1	0.0	2.9	67.4	200	1.92	45.4	1.45	0.81
Oakside Drive	MH16A	MH15A	0.815	3.877	13	3.4615385	55.2	45	179	0	0	0	0	0	1.0	179	0.2	0.8	3.80	2.9	0.0	3.9	94.7	200	3.68	62.9	2.00	1.08
Oakside Drive	MH15A	MH14A	0.612	4.489	12	3.3333333	65.4	40	219	0	0	0	0	0	1.2	219	0.2	0.9	3.80	3.5	0.0	4.7	82.0	200	2.93	56.1	1.79	1.07
Oakside Drive	MH14A	MH13A	0.789	5.278	15	3.3333333	63.4	50	269	0	0	0	0	0	1.4	269	0.2	1.1	3.80	4.3	0.0	5.7	95.8	200	1.24	36.5	1.16	0.83
Oakside Drive	MH13A	MH12A	0.22	5.498	2	3.5	31.8	7	276	0	0	0	0	0	1.4	276	0.0	1.2	3.80	4.4	0.0	5.8	13.7	200	2.48	51.6	1.64	1.07
Oakside Drive	MH12A	MH11A	0.378	5.876	5	3.6	47.6	18	294	0	0	0	0	0	1.5	294	0.1	1.2	3.80	4.7	0.0	6.2	64.3	200	0.47	22.5	0.72	0.61
																											 	
Apple Tree Crescent	MH11-5A	MH11-4A	0.564	0.564	9	3.5555556	56.7	32	32	0	0	0	0	0	0.1	32	0.1	0.1	3.80	0.5	0.0	0.7	76.7	200	3.02	57.0	1.81	0.58
Apple Tree Crescent	MH11-4A	MH11-3A	0	0.564	0			0	32	0	0	0	0	0	0.1	32	0.0	0.1	3.80	0.5	0.0	0.7	36.2	200	1.80	44.0	1.40	0.49
Apple Tree Crescent	MH11-3A	MH11-2A	0.43	0.994	6	3.5	48.8	21	53	0	0	0	0	0	0.3	53	0.1	0.2	3.80	0.8	0.0	1.1	86.9	200	3.40	60.4	1.92	0.72
Apple Tree Crescent	MH11-2A	MH11-1A	0.448	1.442	10	3.2	71.4	32	85	0	0	0	0	0	0.4	85	0.1	0.4	3.80	1.4	0.0	1.7	93.2	200	1.65	42.1	1.34	0.63
Apple Tree Crescent	MH11-1A	MH11A	0.622	46.674	16	3.25	83.6	52	2967.5	0	0	0	0	0	12.1	2967.5	0.2	12.5	3.45	43.1	0.0	55.2	96.8	250	0.43	39.0	0.79	0.91
Oakside Drive	MH11A	MH10A	0.088	52.638	1	4	45.5	4	3265.5	0	0	0	0	0	13.7	3265.5	0.0	13.8	3.41	46.9	0.0	60.6	29.8	250	0.47	40.7	0.83	0.95
Oakside Drive	MH10A	MHAH14-001	0.33	52.968	5	3.6	54.5	18	3283.5	0	0	0	0	0	13.8	3283.5	0.1	13.8	3.41	47.2	0.0	60.9	39.5	250	0.46	40.3	0.82	0.94
Oakside Drive	мнан14-001	MHAH14-001	0.335	53.303	5	3.6	53.7	18	3301.5	0	0	0	0	0	13.9	3301.5	0.1	13.9	3.41	47.4	0.0	61.2	46.7	250	0.60	46.0	0.94	1.07
Oakside Drive	МНАН14-001	MHAH14-001	0.638	0.638	10	3.5	54.9	35	35	0	0	0	0	0	0.2	35	0.1	0.1	3.80	0.6	0.0	0.7	78.1	200	1.00	32.8	1.04	0.42
Ash Green Lane	МНАН14-001	MH7A	0.098	54.039	0			0	3336.5	0	0	0	0	0	14.1	3336.5	0.0	14.1	3.40	47.8	0.0	61.9	37.0	250	0.49	41.6	0.85	0.97
Ash Green Lane	MH7A	MH6A	0	54.039	0			0	3336.5	0	0	0	0	0	14.1	3336.5	0.0	14.1	3.40	47.8	0.0	61.9	26.3	250	0.65	47.9	0.98	1.11
Future Block 110	A5a	MH6A	1.151	1.151	14	4.2857143	52.1	60	60	0	0	0	0	0	0.3	60	0.3	0.3	3.80	1.0	0.0	1.3	12.7	250	0.55	44.1	0.90	0.38
Ash Green Lane	MH6A	MH5A	0.871	56.061	13	3.5384615	52.8	46	3442.5	0	0	0	0	0	14.6	3442.5	0.2	14.5	3.39	49.2	0.0	63.8	108.2	250	0.48	41.2	0.84	0.96
Ash Green Lane	MH5A	MH4A	0.28	56.341	3	3.6666667	39.3	11	3453.5	0	0	0	0	0	14.6	3453.5	0.0	14.5	3.39	49.3	0.0	64.0	18.2	250	0.50	42.0	0.86	0.98
Ash Green Lane	MH4A	MH3A	0.284	56.625	3	3.6666667	38.7	11	3464.5	0	0	0	0	0	14.7	3464.5	0.0	14.6	3.39	49.5	0.0	64.2	59.5	250	0.50	42.0	0.86	0.98
Ash Green Lane	MH3A	MH2A	0	56.625	0	2.5	20.5	0	3464.5	0	0	0	0	0	14.7	3464.5	0.0	14.6	3.39	49.5	0.0	64.2	17.7	250	0.62	46.8	0.95	1.09
Ash Green Lane	MH2A	MH1A	0.59	57.215	5	3.6	30.5	18	3482.5	0	0	0	0	0	14.9	3482.5	0.1	14.7	3.39	49.7	0.0	64.6	94.5	250	0.40	37.6	0.77	0.87
Ash Green Lane	MH1A	EXMH28-61	0 7800	57.215	0	2.5	22.2	·	3482.5	Ů		0	- v	-	14.9	3482.5	0.0	14.7	3.39	49.7	0.0	64.6	20.6	250	0.50	42.0	0.86	0.98
North Street	EXMH28-61	EXMH28-60	0.7899	58.0049	5	3.5	22.2	17.5	3500	0	0	0	0	0	15.1	3500	0.1	14.7	3.38	49.9	0.0	65.0	76.0	250	0.50	42.0	0.86	0.98
North Street	MHS22	MHS21	1.3566	1.3566	10	3.5	25.8	35	35	0	0	0	0	0	0.4	35	0.1	0.1	3.80	0.6	0.0	0.9	110.0	200	1.00	32.8	1.04	0.44
North Street	MHS21	MHS20	1.228	2.5846	8	3.5	22.8	28	63	0	0	0	0	0	0.4	63	0.1	0.1	3.80	1.0	0.0	1.7	110.0	200	0.50	23.2	0.74	0.44
North Street	MHS20	MHS19	1.1447	3.7293	7	3.5	21.4	24.5	87.5	0	0	0	0	0	1.0	87.5	0.1	0.3	3.80	1.4	0.0	2.4	110.0	200	0.90	31.1	0.74	0.43
North Street	MHS19	MHS18	0.3657	4.095	2	3.5	19.1	7	94.5	0	0	0	0	0	1.1	94.5	0.0	0.4	3.80	1.5	0.0	2.6	35.0	200	1.80	44.0	1.40	0.75
North Street	MHS18	MHS17	1.2374	5.3324	8	3.5	22.6	28	122.5	0	0	0	0	0	1.4	122.5	0.1	0.5	3.80	2.0	0.0	3.3	110.0	200	2.00	46.4	1.48	0.85
North Street	MHS17	MHS16	1.2162	6.5486	8	3.5	23.0	28	150.5	0	0	0	0	0	1.7	150.5	0.1	0.6	3.80	2.4	0.0	4.1	110.0	200	1.00	32.8	1.04	0.70
			 	+			22.9	28	178.5	0	0	0	<u> </u>	<u> </u>	. · · · · · · · · · · · · · · · · · · ·			·			0.0		 					0.75

Minimum Velocity (m/s) = 0.60

Maximum Velocity (m/s) = 3.65

Mannings n = 0.013

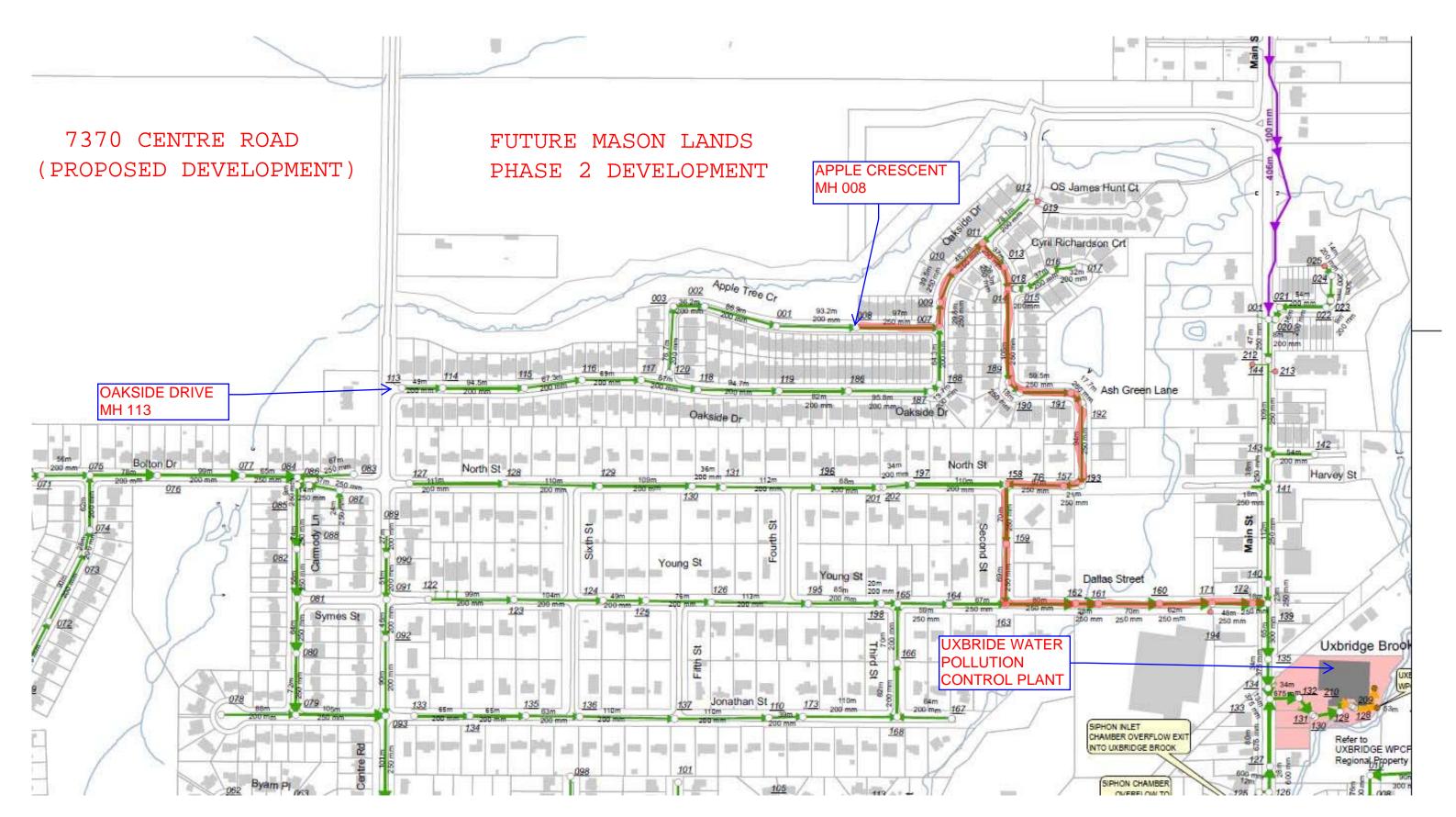
Avg. Domestic Flow (l/cap/day) = 364

Max. Harmon Peaking Factor = 3.8

Min. Harmon Peaking Factor = 1.5

Infiltration Rate (l/s/ha) = 0.26

Sanitary Design Sheet 7370 Centre Road **Option 4 - Ultimate Proposed Development to Mason Lands Phase 2** Uxbridge, Ontario


Project: 7370 Centre Road Project No. 2099

Date: 2-Dec-20

Designed By: N.D.M.

Reviewed By: 0

LOCATION						RESIDEN'	ΓIAL			INDUSTRIAL/COMMERCIAL/INSTITUTIONAL				FLOW CALCULATIONS							PIPE DATA							
STREET	MAN	HOLE	AREA	ACCUM. AREA	UNITS	DEN:		RESIDENTIAL POPULATION	ACCUM. RESIDENTIAL POPULATION	AREA	ACCUM. AREA	POPULATION DENSITY	FLOW RATE	ACCUM. EQUIV. POPULATION	INFILTRATION	TOTAL ACCUM. POPULATION	AVG. DOMESTIC FLOW	ACCUM. AVG. DOMESTIC FLOW		PEAKED RESIDENTIAL FLOW	ICI FLOW	TOTAL FLOW	LENGTH	PIPE DIAMETER	R SLOPE		V FULL FLOW VELOCITY	
	FROM	то	(ha)	(ha)	(#)	(p/unit)	(p/ha)			(ha)	(ha)	(p/ha)	(l/s/ha)		(L/s)		(L/s)	(L/s)		(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/s)	(m/s)	(n
Second Street	EXMH28-60	MH28-73	0.1753	65.9514	1	3.5	20.0	3.5	3682	0	0	0	0	0	17.1	3682	0.0	15.5	3.37	52.2	0.0	69.4	69.8	250	0.71	50.1	1.02	1.
Second Street	MH28-73	MH28-64	0	65.9514	0	3.5		0	3682	0	0	0	0	0	17.1	3682	0.0	15.5	3.37	52.2	0.0	69.4	69.5	250	0.50	42.0	0.86	0.
Dallas Street	MH28-64	MH28-65	18.8	84.7514	97	3.5	18.1	339.5	4021.5	0	0	0	0	0	22.0	4021.5	1.4	16.9	3.33	56.4	0.0	78.5	80.0	250	0.69	49.4	1.01	1.
Dallas Street	MH28-65	MH28-66	0	84.7514	0	3.5		0	4021.5	0	0	0	0	0	22.0	4021.5	0.0	16.9	3.33	56.4	0.0	78.5	27.8	250	1.30	67.8	1.38	1.
Dallas Street	MH28-66	MH28-67	0	84.7514	0	3.5		0	4021.5	0	0	0	0	0	22.0	4021.5	0.0	16.9	3.33	56.4	0.0	78.5	69.8	250	0.32	33.6	0.68	0.′
Dallas Street	MH28-67	MH28-9	0	84.7514	0	3.5		0	4021.5	0	0	0	0	0	22.0	4021.5	0.0	16.9	3.33	56.4	0.0	78.5	61.7	250	0.35	35.2	0.72	0.8
Dallas Street	MH28-9	EXMH28-11	0	84.7514	0	3.5		0	4021.5	0	0	0	0	0	22.0	4021.5	0.0	16.9	3.33	56.4	0.0	78.5	48.3	250	0.22	27.9	UNDER	#VAl
Dallas Street	EXMH28-11	EXMH28-12	0	84.7514	0	3.5		0	4021.5	0	0	0	0	0	22.0	4021.5	0.0	16.9	3.33	56.4	0.0	78.5	18.0	250	0.80	53.2	1.08	1.

OPTION 4 - ULTIMATE PROPOSED DEVELOPMENT TO MASON LANDS PHASE 2 CAPACITY ANALYSIS

APPENDIX H WATER DISTRIBUTION ANALYSIS

TECHNICAL MEMORANDUM

To: Nick McIntosh, P.Eng - SCS Consulting Group

Kristin St-Jean, P.Eng - Municipal Engineering Solutions From:

Date: December 21, 2020

Project: 17002-91

Re: 7370 Centre Road, Uxbridge

Hydraulic Analysis – Preliminary Findings

Please find attached the preliminary findings regarding the Hydraulic Analysis for the 7370 Centre Road Development in the Township of Uxbridge.

Development Background

The proposed development is located between 6th Concession Road and Centre Road, north of Bolton Drive in the Township of Uxbridge. The development is entirely residential and consists of 521 single family homes and 69 townhouses.

The development will be serviced across two pressure zones. Zone 1 at the east end of the development will be connected to the existing system at Centre Road and Oakside Drive, with a 300 mm watermain extending up Centre Road. Zone 1 services elevations up to approximately 300 m with an HGL of 330.6 m (High Water Level).

Zone 2 will be connected to the existing system at 6th Concession Road and Bolton Drive, with a 300 mm watermain extending up 6th Concession Road. Additional pumping capacity will be required at the Zone 2 pumping station to accommodate this development. It is anticipated that the Zone HGL will not change as a result of these upgrades (HGL approximately 360 m). Zone 2 services elevations up to approximately 330 m.

Demands

To calculate the equivalent population and water demand for this development MES used Region of Durham standard population densities as noted in the "Design Specifications for Sanitary Sewers, April 2017". Water demand rates and peaking factors used for this analysis are based on the "MECP Design Guidelines for Drinking Water Systems, 2008". The calculated demands for the development are summarized in Table 1. Detailed water demand criteria and calculations are attached.

Average Day Minimum Hour **Maximum Day Peak Hour** Demand (L/s) Demand (L/s) Demand (L/s) Demand (L/s) Zone 2 8.83 4.00 29.87 19.93 Zone 1 1.76 0.80 3.97 5.96 TOTAL

4.80

23.90

35.83

10.59

Table 1 – Water Demands

The division of demands between Zone 1 and Zone 2 are based on the preliminary placement of the zone boundary and may change once the actual zone boundary has been determined.

Fire Flow

A minimum required Fire Flow of 75 L/s (4,500 L/min) was used in the analysis as outlined in the Region of Durham's "Design Specifications for Watermains, April 2017". This minimum fire flow requirement has been used in the modelling for both single family homes and townhouses. It should be noted that the Region of Durham requires that the fire flow demands be calculated as outlined in the current edition of "Water Supply for Fire Protection, A Guide to Recommended Practice" issued by the Fire Underwriters Survey of the Insurance Bureau of Canada, unless otherwise approved by the Region of Durham. Once the detailed design data (specifics) for the proposed buildings are known the required fire flow for this development will need to be finalized and reviewed and confirmed by the Region.

Hydraulic Model

A hydraulic model was created using the results of the hydrant tests performed by the Region in November 2020 (attached). It should be noted that because the modelling is based on hydrant tests it is anticipated that pressures will be lower during peak hour and higher during minimum hour than indicated in the modeling. The hydrant tests used for the boundary conditions provide a snapshot of the system performance and do not capture the system variations as accurately as boundary information from a calibrated model or system monitoring.

Elevations in the development range from 288.2 m to 335.2 m. The elevation range in Zone 2 of the development is beyond the currently serviced elevations within the Township (335.2 m vs 330 m).

The Zone boundary was placed in the eastern portion of the development at an elevation of approximately 300 m. The zone boundary in the model is preliminary and the actual zone boundary will be determined once more detailed modelling has been completed and in consultation with the Region.

The results of the modelling indicate that the minimum required fire flow can be met at all areas within the development with adequately sized pipes. It should be noted that several areas just meet the Region's minimum fire flow requirement and will not likely meet FUS fire flow demands should those be required by the Township/Region.

Pipe sizes shown in the model are preliminary and must be reviewed once more accurate modelling information is available and the required fire flows for this site are known.

Zone 1

Pressures in the proposed Zone 1 area are below 275 kPa (40 psi) at the cul-de-sac where elevations exceed 300 m. Pressures are below 275 kPa when the HGL in the immediate area is below 329.5 m. While it would be possible to service this watermain loop from Zone 2, the resulting pressures at the east end of the loop would exceed 700 kPa (100 psi).

Zone 2

Pressures at the west end of the development are below 275 kPa (40 psi) for elevations exceeding 331.5 m. The hydrant test indicated that the current HGL of Zone 2 was approximately 362 m. After adding the development to the model, the HGL of the Zone 2 area decreased to between 360.6 and 360.8 m. No additional pumping capacity was added at the Zone 2 pumping station in the model.

The HGL of the western portion of Zone 2 area would need to be maintained above approximately 364 m to ensure that the minimum pressure of 275 kPa is met for all areas during peak hour conditions. This is above the current HGL of the pressure zone.

Servicing Constraints

Based on the preliminary modelling of the 7370 Centre Road Development several servicing constraints for the water servicing strategy have been identified as summarized below.

- The elevation range in the western portion of the development is beyond the current service elevations for Zone 2 (335.2 m vs 330 m). This leads to pressures below 275 kPa (40 psi) for elevations exceeding 331.5 m (approximately 95 units).
- The location of the zone boundary as proposed results in pressures below 275 kPa (40 psi) at the cul-de-sac where elevations exceed 300 m (10-15 units).
- Due to the elevation range within the eastern portion of the development (288.2 to 301.2 m) the ideal location of the zone boundary (300 m elevation) splits the watermain looping on these two streets, resulting in several dead ends.
- Future pumping capacity requirements, storage and water allocation were not investigated as part of this analysis.
- Preliminary results show that the estimated fire flow available is quite low and may be lower than ultimately required by the Township/Region.

Alternatives and Next Steps

The following alternatives and recommendations are provided to assist in planning the next steps in determining the optimal servicing strategy for this development.

- Due to the size of this development and the servicing constraints identified, it is recommended that modelling be completed with the Region's complete water model of the Township. The recommended servicing strategy for this development should take into account pressure variations not captured by the hydrant tests as well as the typical operation of the Township's water system.
- The location of the zone boundary within the development should be determined with additional
 pressure information (pressure variations during minimum hour and peak hour demand scenarios).
 The ideal location should minimize pressures below 275 kPa and above 700 kPa while still
 maintaining a looped watermain layout.
- It has already been determined that additional pumping capacity will be required for Zone 2 to service this development. It is anticipated that the Zone 2 HGL will not change as a result of these upgrades, however, the opportunity to raise the HGL of this pressure zone should be investigated. The HGL of Zone 2 would need to be raised by several meters (HGL of approximately 364 m or higher) to maintain pressures of 275 kPa at the higher elevations in the western portion of this development. Any changes to the HGL in Zone 2 must take into account the service pressures of all existing areas of Zone 2 to ensure that pressures within the system do not exceed 700 kPa in non-occupied areas and 550 kPa in occupied areas.
- If maintaining an HGL in Zone 2 sufficient to service elevations up to 335.2 m is not feasible, additional pumping at a higher HGL would be required. This alternative would mean creating a third pressure district in the Township.
- Future pumping capacity requirements, storage and water allocation were not investigated as part of this analysis and need to be confirmed with the Region.

• Fire flow requirements for this development must be confirmed with the Township/Region.

 $File\ Location:\ C: \ Users \ Acer \ Documents \ Projects \ 17002-91\ 7370\ Centre\ Road\ Uxbridge \ S.O.\ Report \ Centre\ Road\ Uxbridge\ TM_Water\ System_20201221.docx$

Attachments:

Design Criteria Water Demands Node IDs Elevations Hydrant Test Results Available Fire Flow Pressure Results

The Regional Municipality of Durham

Design Specifications for Watermains, April 2017 (unless otherwise stated)

Equivalent Population by Unit

Type of Development	Equivalent Population Density
	(Person/Unit)
Single Family or Semi-Detached	3.5
Townhouse	3.0

Water Design Factors

Average Daily Demand (L/person/day)	450
Minimum Hour Demand P.F.	0.45
Maximum Daily Demand P.F.	2.25
Maximum Hourly Demand P.F.	3.38

Note: Domestic Average Demand Rate and Peaking Factors taken from MECP Design Guidelines for Drinking Water Systems (2008). Peaking factors are for areas servicing 2001-3000 people.

Coefficient of Roughness

Size of Pipe (mm Dia.)	Coefficient of Roughness (C)
150	100
200-300	110
350-600	120
Over 600	130

Minimum Pipe Size

Type of Development	Size of Pipe (mm Dia.)
Residential	150
Commercial/Industrial/Institutional	300

Working Pressures

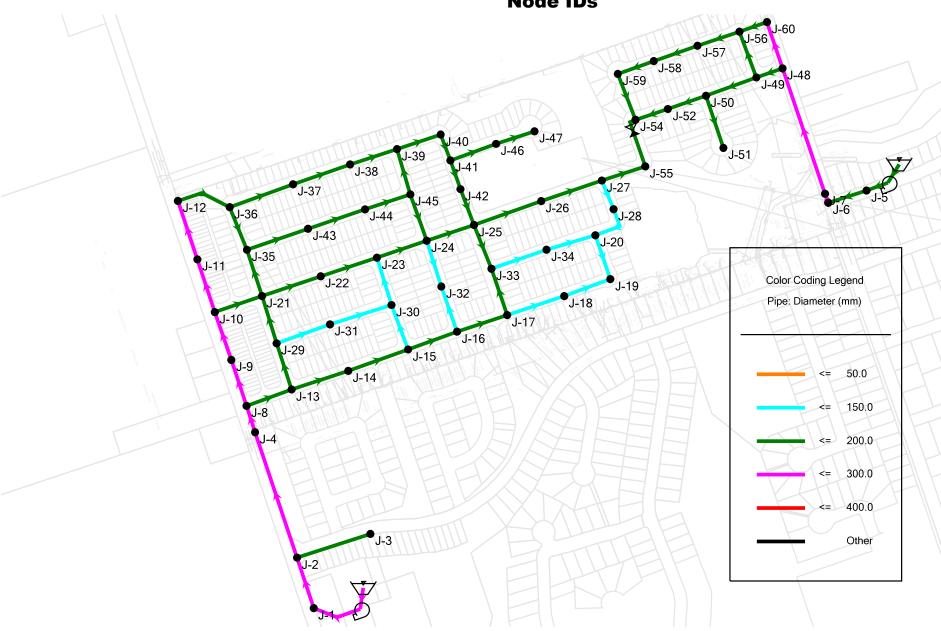
Parameter	Pressure					
Normal Cond	dition					
Minimum Max Hour Pressure	275 kPa (40 psi)					
Maximum (Building Code)	550 kPa (80 psi)					
Maximum recommended	700 kPa (100 psi)					
Fire Flow Con-	ditions					
Minimum Pressure	140 kPa (20 psi)					

Water Demand 7370 Center Road Development, Uxbridge December 2020

Zone 2 Demands

	Type of De	velopment	Equivalent Population	Demands						
Node	Single/Semi	Townhouse	Total Population	Average Day	Minimum Hour	Maximum Day	Peak Hour			
	(units)	(units)	(Residential)	(L/s)	(L/s)	(L/s)	(L/s)			
J-9		12	36	0.19	0.09	0.43	0.64			
J-10		12	36	0.19	0.09	0.43	0.64			
J-11		12	36	0.19	0.09	0.43	0.64			
J-12		12	36	0.19	0.09	0.43	0.64			
J-13	12		42	0.22	0.10	0.50	0.74			
J-14	18		63	0.33	0.15	0.74	1.12			
J-15	10		35	0.18	0.08	0.41	0.61			
J-16	11		39	0.20	0.09	0.45	0.68			
J-17	9		32	0.16	0.07	0.36	0.54			
J-18	17		60	0.31	0.14	0.70	1.05			
J-19	9		32	0.16	0.07	0.36	0.54			
J-20	9		32	0.16	0.07	0.36	0.54			
J-22	25		88	0.46	0.21	1.04	1.55			
J-23	11		39	0.20	0.09	0.45	0.68			
J-24	8		28	0.15	0.07	0.34	0.51			
J-26	9		32	0.16	0.07	0.36	0.54			
J-27	6		21	0.11	0.05	0.25	0.37			
J-28	4		14	0.07	0.03	0.16	0.24			
J-29		21	63	0.33	0.15	0.74	1.12			
J-30	17		60	0.31	0.14	0.70	1.05			
J-31	28		98	0.51	0.23	1.15	1.72			
J-32	14		49	0.26	0.12	0.59	0.88			
J-33	17		60	0.31	0.14	0.70	1.05			
J-34	18		63	0.33	0.15	0.74	1.12			
J-35	12		42	0.22	0.10	0.50	0.74			
J-36	17		60	0.31	0.14	0.70	1.05			
J-37	18		63	0.33	0.15	0.74	1.12			
J-38	17		60	0.31	0.14	0.70	1.05			

Zone 2 Demands


	Type of De	velopment	Equivalent Population		Dem	nands	
Node	Single/Semi	Townhouse	Total Population	Average Day	Minimum Hour	Maximum Day	Peak Hour
	(units) (units)		(Residential)	(L/s)	(L/s)	(L/s)	(L/s)
J-39	10		35	0.18	0.08	0.41	0.61
J-40	10		35	0.18	0.08	0.41	0.61
J-42	9		32	0.16	0.07	0.36	0.54
J-43	21		74	0.38	0.17	0.86	1.28
J-44	20		70	0.36	0.16	0.81	1.22
J-45	17		60	0.31	0.14	0.70	1.05
J-46	7		25	0.13	0.06	0.29	0.44
J-47	8		28	0.15	0.07	0.34	0.51
J-55	7		25	0.13	0.06	0.29	0.44
TOTAL	425	69	1695	8.83	4.00	19.93	29.87

Zone 1 Demands


	Type of De	velopment	Equivalent Population		Dem	nands	
Node	Single/Semi	Townhouse	Total Population	Average Day	Minimum Hour	Maximum Day	Peak Hour
	(units)	(units)	(Residential)	(L/s)	(L/s)	(L/s)	(L/s)
J-50	13		46	0.24	0.11	0.54	0.81
J-51	16		56	0.29	0.13	0.65	0.98
J-52	11		39	0.20	0.09	0.45	0.68
J-54	8		28	0.15	0.07	0.34	0.51
J-56	9		32	0.16	0.07	0.36	0.54
J-57	14		49	0.26	0.12	0.59	0.88
J-58	14		49	0.26	0.12	0.59	0.88
J-59	11		39	0.20	0.09	0.45	0.68
TOTAL	96	0	336	1.76	0.80	3.97	5.96

	Type of De	velopment	Equivalent Population		Dem	ands	
	Single/Semi	Townhouse	Total Population	Average Day	Minimum Hour	Maximum Day	Peak Hour
	(units)	(units)	(Residential)	(L/s)	(L/s)	(L/s)	(L/s)
TOTAL	521	69	2031	10.59	4.80	23.90	35.83

PRELIMINARY Node IDs

PRELIMINARY

THE REGIONAL MUNICIPALITY OF DURHAM WORKS DEPARTMENT

FLOW TEST SUMMARY AND RESULTS

Requested by:	Andrew Du	nlop, CRS, CAN	N-CISEC		Account No.:					
Company:	SCS Consu	lting Group Ltd.								
Address:	30 Centuria	n Drive, Suite 1	00		Telephone: 905.475.1900 Ext. 2355					
	Markham,	ON, L3R 8B8			Email: adunlop@	scsconsultinggroup.com				
Test Location:	1 Oakside l	Or								
Municipality:	Township of	of Uxbridge				<u>-</u>				
	Date:	26-Nov-20	Time:	10:00am	Conducted by:	K.J				

Nozzle	Residual Pr	ressure (p.s.i.)	Pitot Guage	
Size (in.)	Field Reading @ Monitoring Hydrant	Actual @ Flow Hydrant (adjusted)*	Pressure (p.s.i.)	Flow (i.g.p.m.)
STATIC	63.2	63.3	4	0.0
1-1/2	61.6	61.7	60.4	431.9
1-3/4	60.9	61.0	57.7	574.6
2-1/2	57.9	58.0	53.2	1021.1
2 x 2-1/2		0.1		0.0

 $^{^{\}star}$ Calculation based on gain/loss in pressure due to elevation difference between flow & monitoring hydrants

Hydrant Elevations (ft.)			
Flow Hydrant:	86.6		
Static Hydrant:	86.9		
Difference:	-0.3		
Pressure Diff. (p.s.i.):	-0.1		

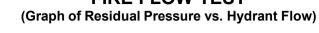
393

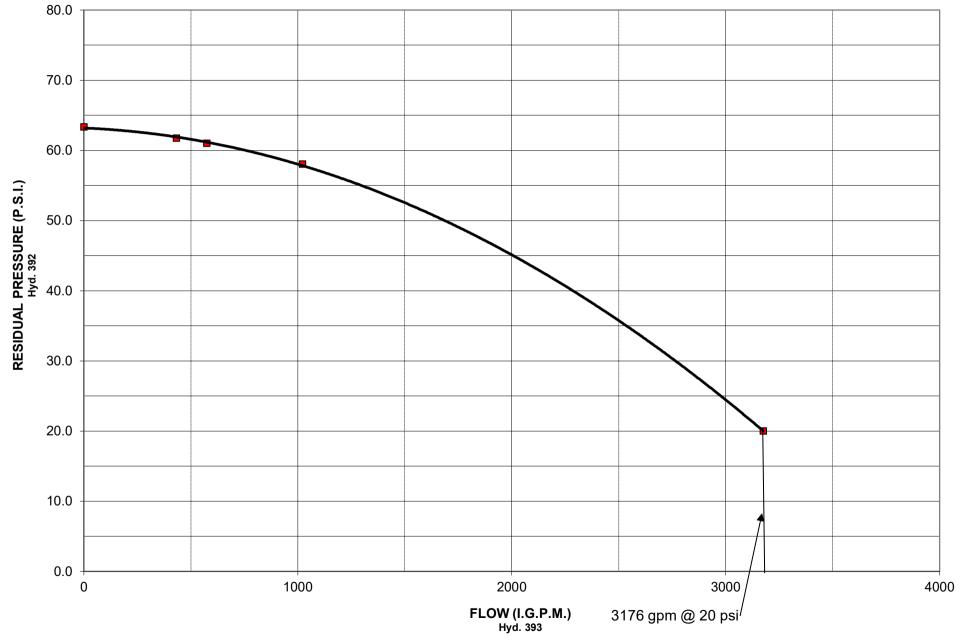
392

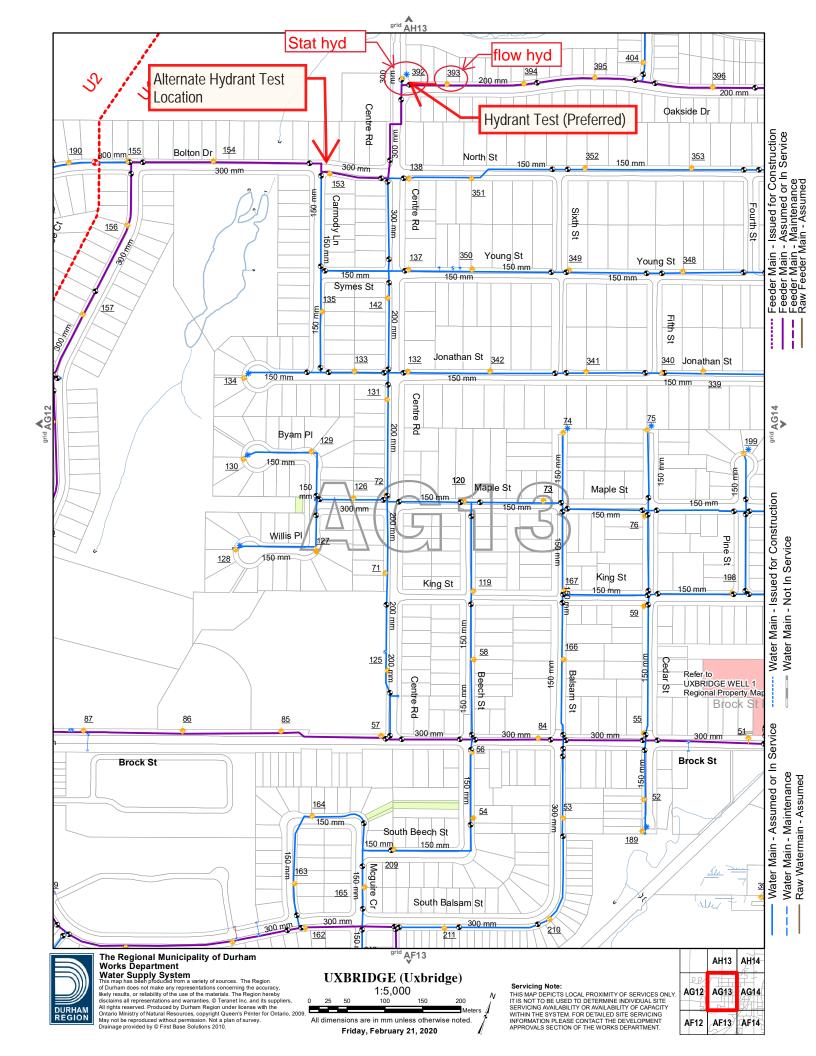
Flow Hydrant:

Monitoring Hydrant:

Comments:	
Flow for 1-1/2 & 1-3/4 nozzle calculated using Discharge of smooth nozzl	les
Flow for 2-1/2 nozzle calculated using Discharge for circular outlets	


Results			
Static Pressure	63.3		
Flow at 20 p.s.i. (I.g.p.m.):	3176		
	(approx.)		
Checked by:			


Disclaimer for Fire Flow Tests


While the Regional Municipality of Durham (hereinafter referred to as the "Region") makes every effort to ensure that the information contained herein is accurate and up to date, the Region shall not be held liable for improper or incorrect use of the data and information described and/or contained herein. The user must make his/her own determination as to its accuracy and suitability for the user's own use. The data, information and related graphics contained herein are not legal documents and are not intended to be used as such. The user hereby recognizes that the information and data are dynamic and may change over time without notice. The Region makes no commitment to update the information or data contained herein. The user recognizes and acknowledges that the data and information provided by the Region was acquired by the Region for a specific purpose and this information may be inaccurate or unreliable if used for other purposes. The Region is not responsible for your use or reliance upon this information. The Region does not warrant or guarantee the results of the use of the information provided to you by the Region in terms of correctness, accuracy, reliability, completeness, usefulness, timeliness or otherwise. The entire risk as to the results of any information obtained from the Region is entirely assumed by the recipient.

FIRE FLOW TEST

Location: 1 Oakside Dr Municipality: Township of Uxbridge Date: Nov. 26, 2020

THE REGIONAL MUNICIPALITY OF DURHAM WORKS DEPARTMENT

FLOW TEST SUMMARY AND RESULTS

Requested by:	Andrew Du	nlop, CRS, CAN	N-CISEC		Account No.:	
Company:	SCS Consu	lting Group Ltd.				
Address:	30 Centuria	n Drive, Suite 1	00		Telephone: 905.475.190	00 Ext. 2355
	Markham, ON, L3R 8B8		Email: adunlop@scsconsultinggroup.com			
Test Location:	124 Bolton	Dr				
Municipality:	Township o	of Uxbridge				
	Date:	26-Nov-20	Time:	9:30am	Conducted by:	K.J

Nozzle	Residual Pr	ressure (p.s.i.)	Pitot Guage	
Size (in.)	Field Reading @ Monitoring Hydrant	Actual @ Flow Hydrant (adjusted)*	Pressure (p.s.i.)	Flow (i.g.p.m.)
STATIC	41.0	41.9	4	0.0
1-1/2	34.6	35.5	44.4	370.3
1-3/4	31.8	32.7	42.8	494.9
2-1/2	31.5	32.4	40.7	893.2
2 x 2-1/2		0.9		0.0

 $^{^{\}star}$ Calculation based on gain/loss in pressure due to elevation difference between flow & monitoring hydrants

Hydrant Elevations (ft.)				
Flow Hydrant:	98.8			
Static Hydrant:	100.9			
Difference:	-2.1			
Pressure Diff. (p.s.i.):	-0.9			

294

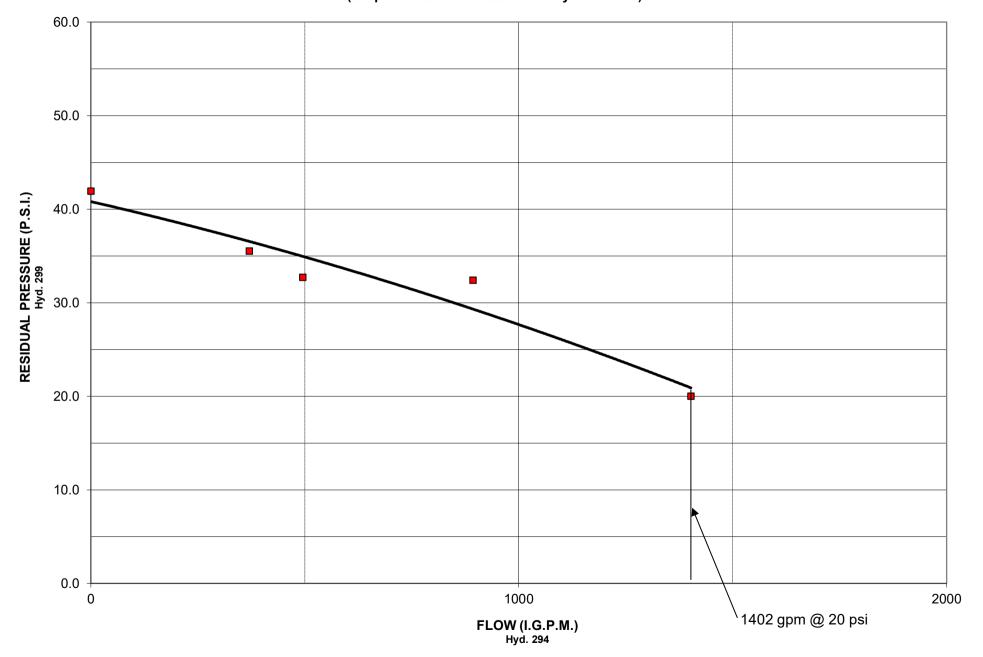
299

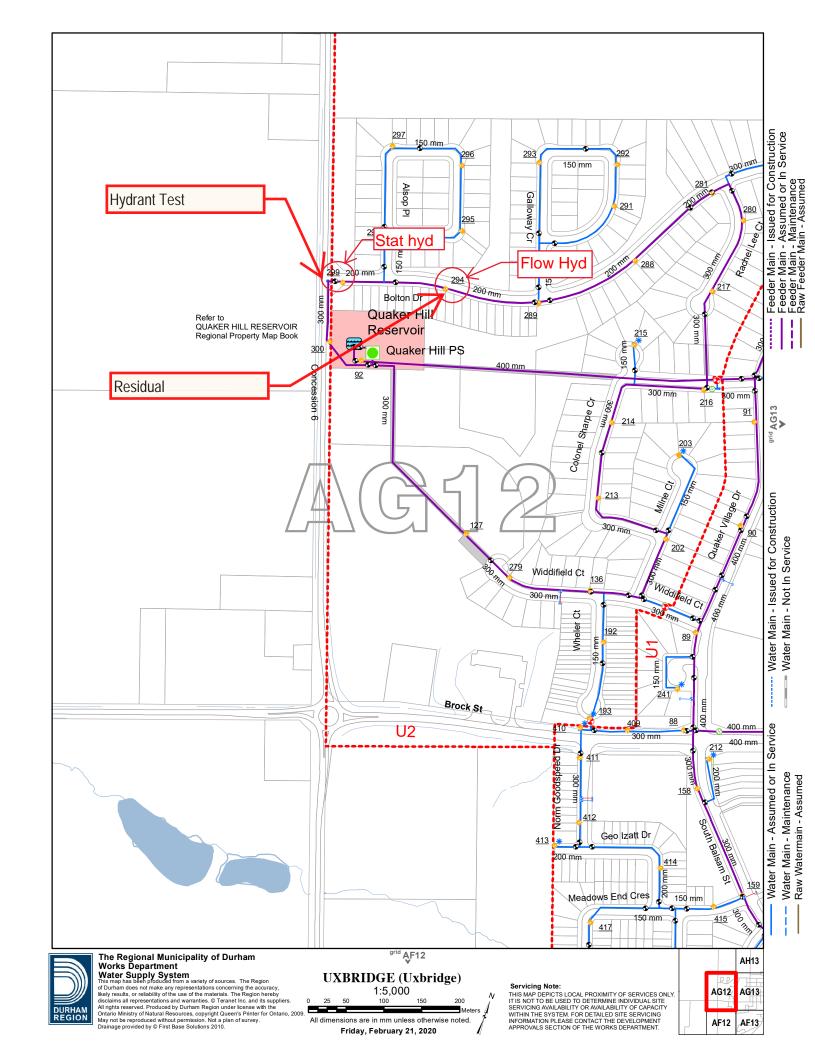
Flow Hydrant:

Monitoring Hydrant:

Comments:	
Flow for 1-1/2 & 1-3/4 nozzle calculated using Discharge of smooth nozzle	es
Flow for 2-1/2 nozzle calculated using Discharge for circular outlets	

Results			
Static Pressure	41.9		
Flow at 20 p.s.i. (I.g.p.m.):	1402		
	(approx.)		
Checked by:			

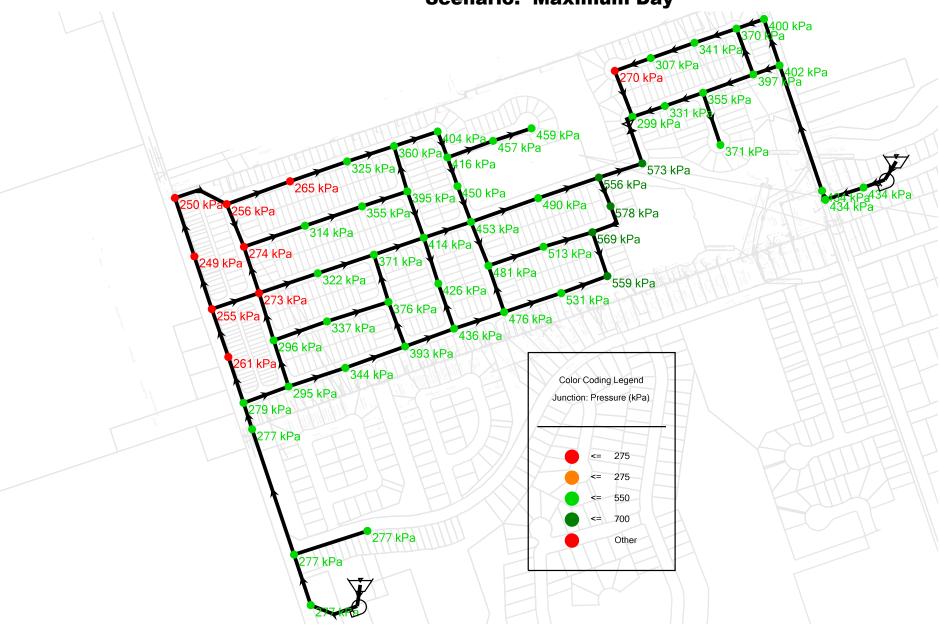

Disclaimer for Fire Flow Tests


While the Regional Municipality of Durham (hereinafter referred to as the "Region") makes every effort to ensure that the information contained herein is accurate and up to date, the Region shall not be held liable for improper or incorrect use of the data and information described and/or contained herein. The user must make his/her own determination as to its accuracy and suitability for the user's own use. The data, information and related graphics contained herein are not legal documents and are not intended to be used as such. The user hereby recognizes that the information and data are dynamic and may change over time without notice. The Region makes no commitment to update the information or data contained herein. The user recognizes and acknowledges that the data and information provided by the Region was acquired by the Region for a specific purpose and this information may be inaccurate or unreliable if used for other purposes. The Region is not responsible for your use or reliance upon this information. The Region does not warrant or guarantee the results of the use of the information provided to you by the Region in terms of correctness, accuracy, reliability, completeness, usefulness, timeliness or otherwise. The entire risk as to the results of any information obtained from the Region is entirely assumed by the recipient.

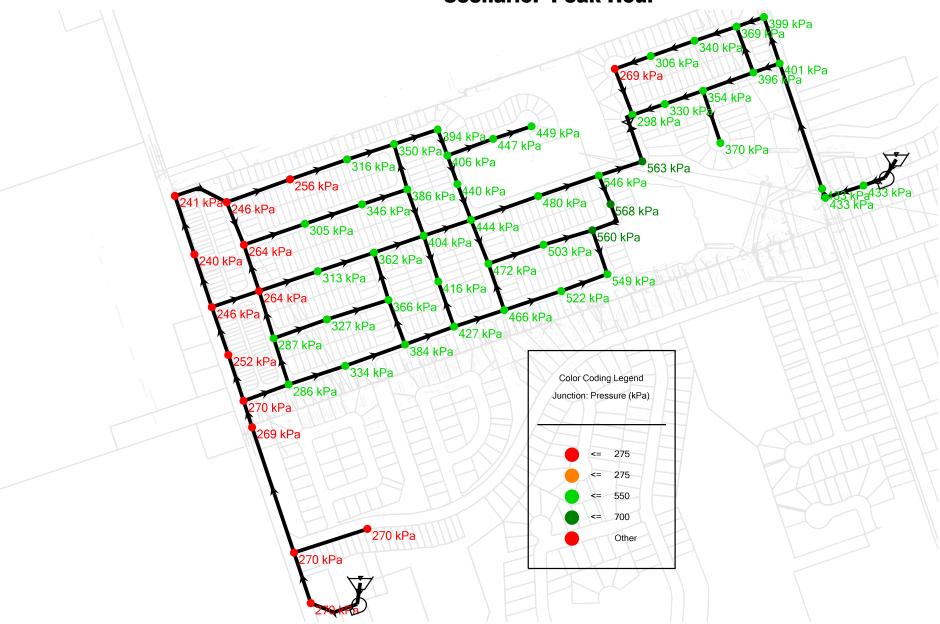
FIRE FLOW TEST

Location: 124 Bolton Dr Municipality: Township of Uxbridge Date: Nov. 26, 2020

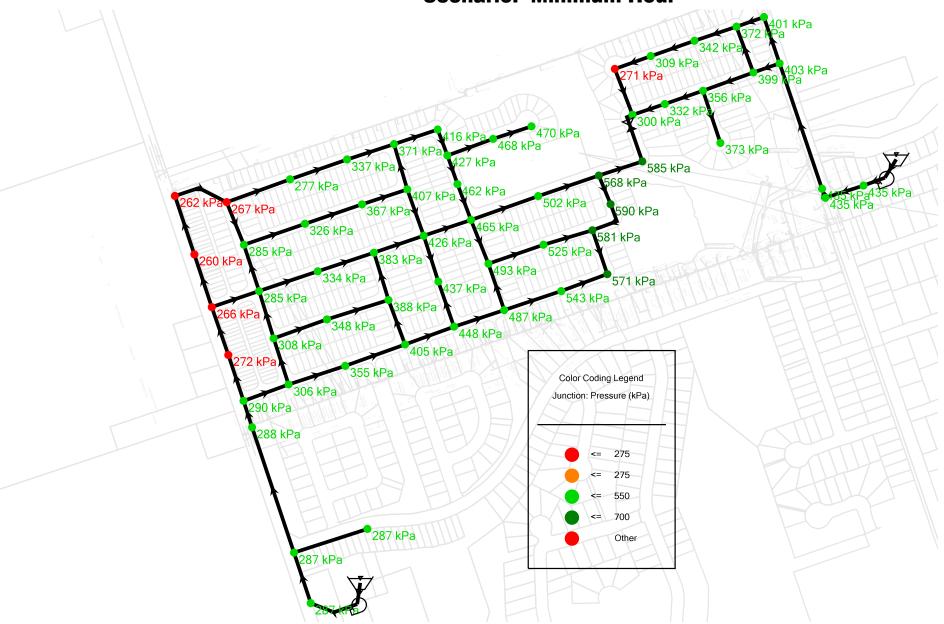
(Graph of Residual Pressure vs. Hydrant Flow)



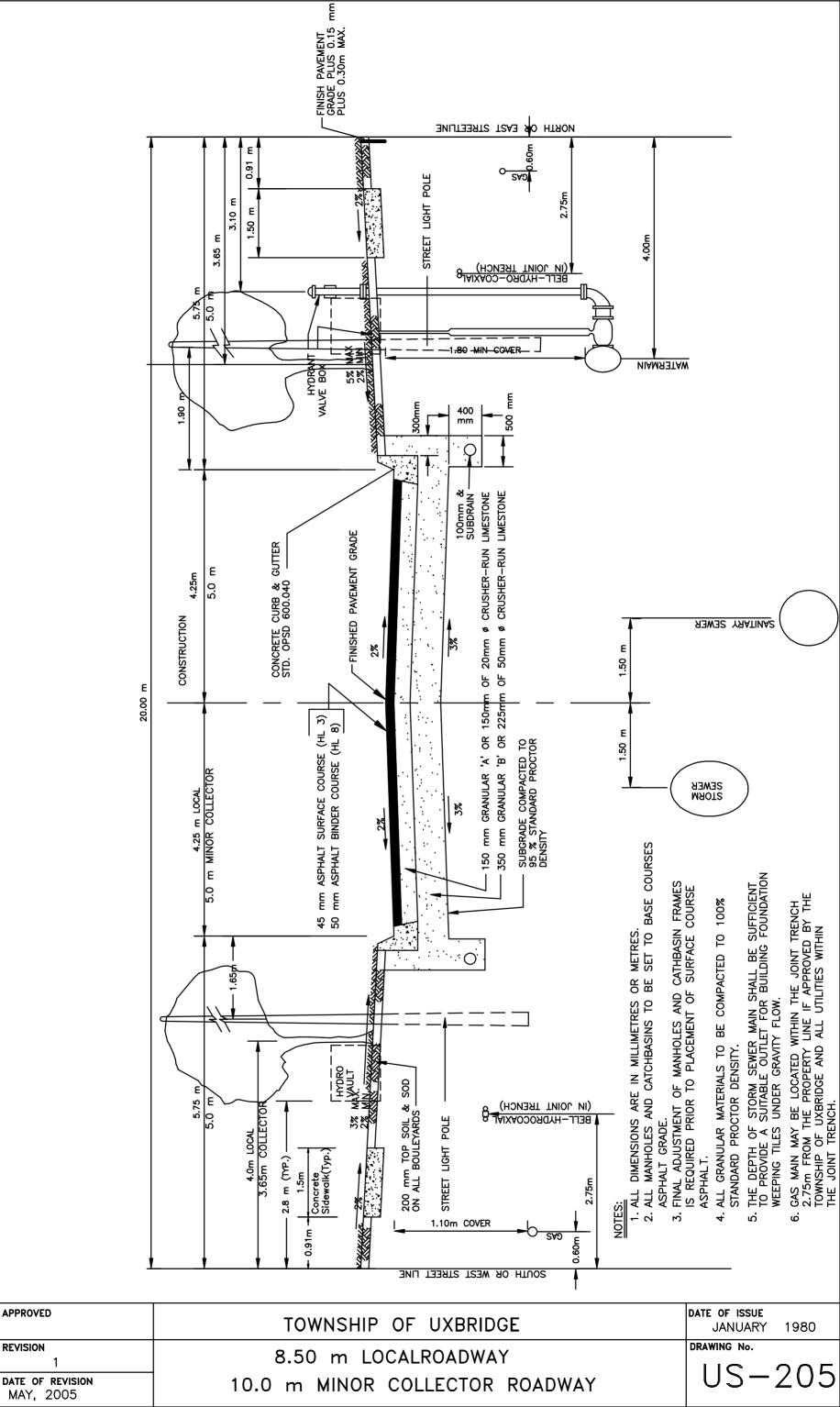
PRELIMINARY Scenario: Maximum Day

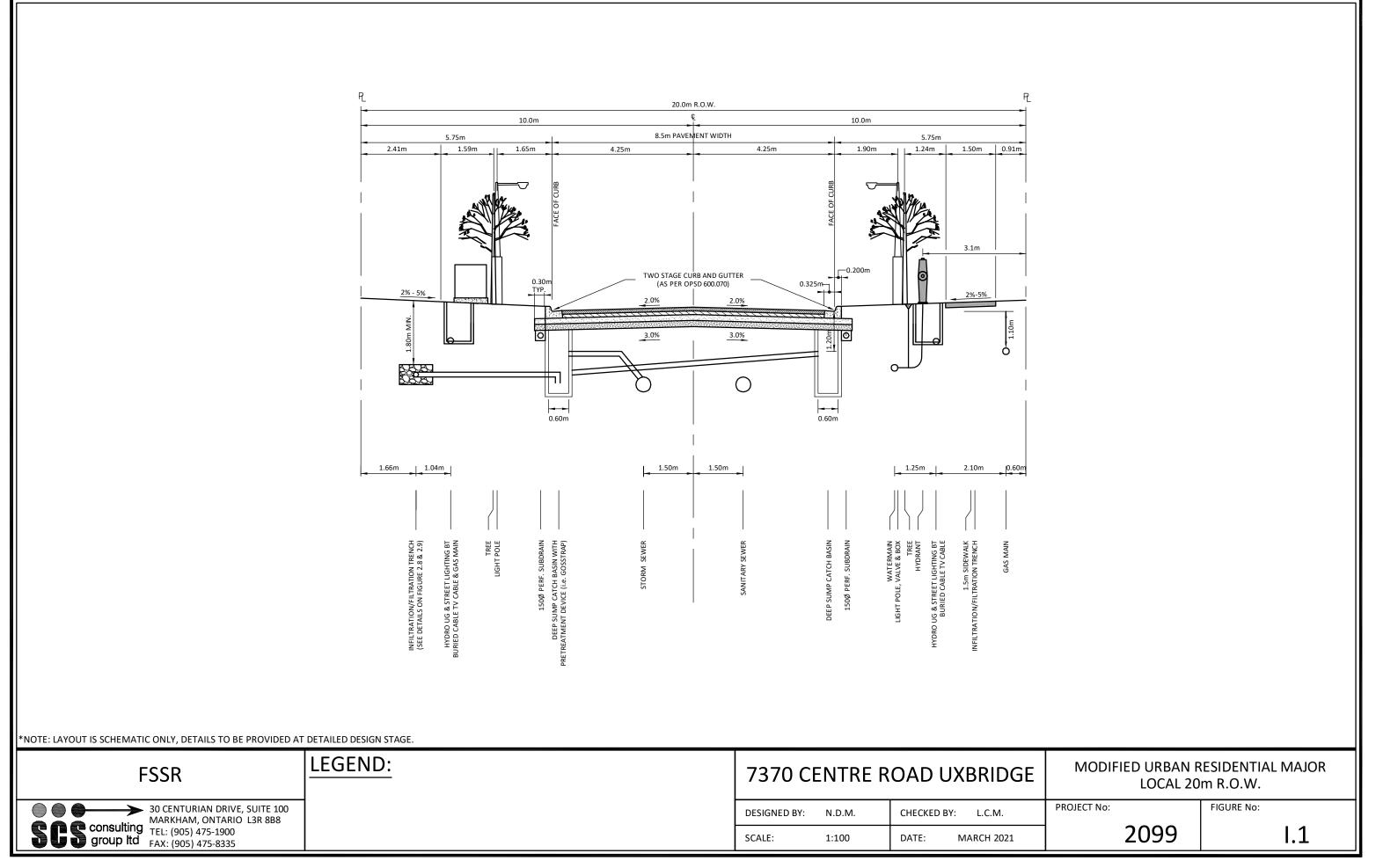

PRELIMINARY

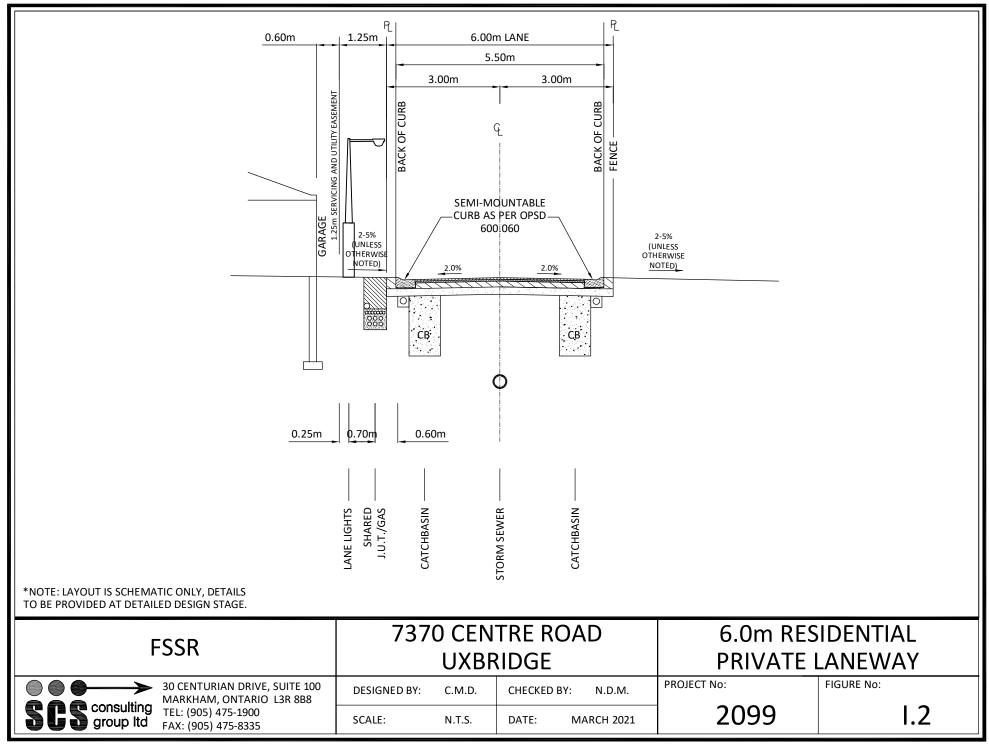
Scenario: Maximum Day

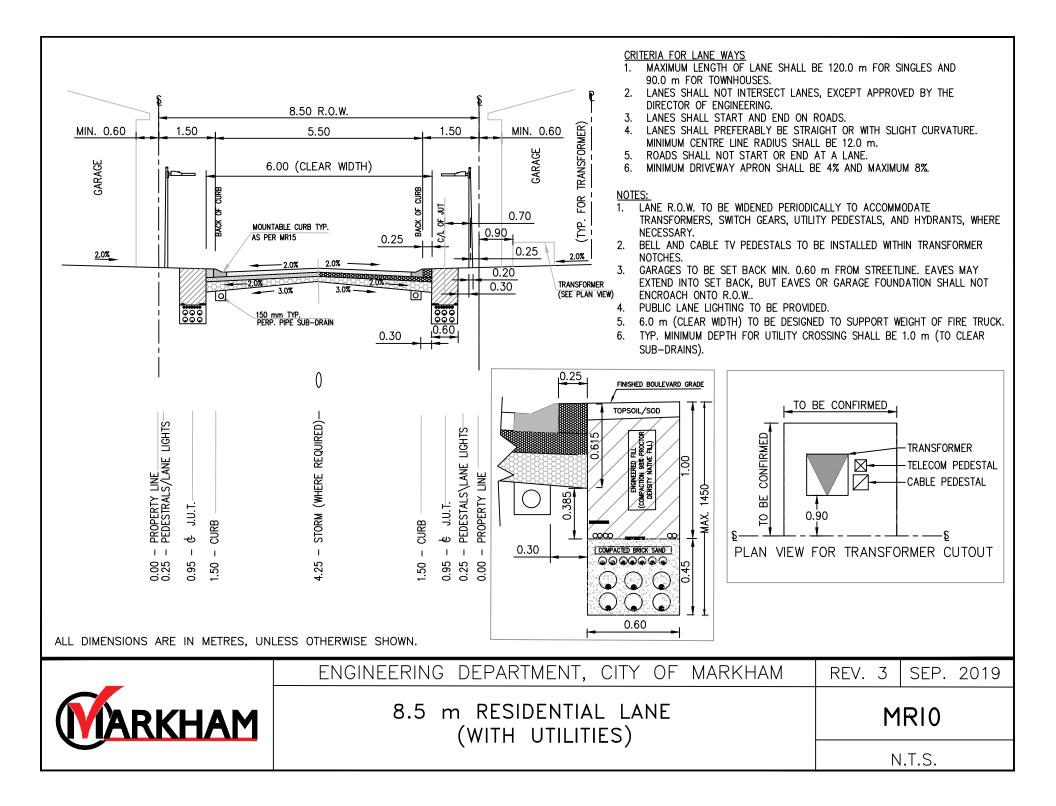

PRELIMINARY

Scenario: Peak Hour


PRELIMINARY


Scenario: Minimum Hour




APPENDIX I RIGHT-OF-WAY CONCEPTS

SCS Consulting Group Ltd 30 Centurian Drive, Suite 100 Markham, ON, L3R 8B8 Phone 905 475 1900 Fax 905 475 8335