

Wooden Sticks Golf Club

Wooden Sticks Golf Club

R.J. Burnside & Associates Limited 1465 Pickering Parkway Suite 200 Pickering ON L1V 7G7 CANADA

November 2022 300050985.0003

Distribution List

No. of Hard Copies	PDF	Email	Organization Name
0	Yes	Yes	Greg Seemann, Wooden Sticks Golf Club
0	Yes	Yes	Scott Waterhouse, GHD

Record of Revisions

Revision	Date		Description
	November 4, 2022	Initial Submission	

R.J. Burnside & Associates Limited

Report Prepared By: Benedict Wong, E.I.T. Transportation Planner BW:cv **Report Reviewed By:** David Angelakis, C.E.T. Senior Project Manager – Transportation DA:cv

Executive Summary

R.J. Burnside & Associates Limited (Burnside) was retained by Wooden Sticks Golf Club (the Client) to undertake a Transportation Study for a proposed hotel that will be located at 40 Elgin Park Drive in the Township of Uxbridge.

The site is currently occupied by a golf course, clubhouse which contains a banquet hall, driving range, and maintenance yard. Existing access is provided by two full movement driveways along Elgin Park Drive. One driveway serves the golf course and clubhouse, whereas the other driveway serves the driving range.

A 79-room hotel is proposed adjacent to the clubhouse. Parking is currently provided by a parking lot that will be expanded.

The following is a summary of our key findings.

Traffic Operations

Under existing and future traffic conditions, during both peak hours, all study intersections are currently and are forecasted to operate with excess capacity, a level-of-service (LOS) C or better and queues within their respective storage or link distances. No road network improvements are required as a result of the development.

Site Plan Review

The site is well designed to accommodate all modes of travel. A maneuvering analysis confirms that a refuse truck and delivery truck can access the proposed loading spaces.

Parking and Loading Review

The proposed vehicle parking supply will have a surplus of 103 to 201 spaces depending on parking demand, which will exceed the Township's Zoning By-law (ZBL) 81-19 requirements.

It is proposed to provide nine accessible spaces, which will exceed the Township's requirements. Two loading spaces are proposed, which will meet the ZBL requirements.

Transportation Demand Management

To further facilitate other modes of travel and reduce vehicle trips and parking demand, there are several TDM measures proposed as follows:

- That the Township implement their planned in-boulevard multi-use path along Toronto Street South and paved shoulders on Elgin Park Drive and Concession Road 7, to facilitate active transportation in the study area.
- It is recommended that the operator of the proposed hotel encourage employees to utilize ridesharing, transit and cycling where possible.

Table of Contents

1.0	Introduction 1.1 Background	
	1.2 Scope of Work	
	1.3 Intersection Analysis Methodology	
2.0	Existing Conditions	
	2.1 Site Context	
	2.2 Existing Road Network	
	2.3 Existing Active Transportation	
	2.4 Existing Transit	
	2.5 Existing Traffic Volumes	6
3.0	Background Conditions	
	3.1 Future Active Transportation	
	3.2 Background Traffic Growth	7
	3.3 Background Traffic Volumes	7
4.0	Proposed Development	
	4.1 Trip Generation	
	4.2 Trip Distribution and Assignment	10
5.0	Total Conditions	
	5.1 Total Traffic Volumes	11
6.0	Traffic Operations Analysis	
	6.1 Elgin Park Drive / Toronto Street South	
	6.2 Elgin Park Drive / Confederation Drive / Site Driveway	
	6.3 Elgin Park Drive / Concession Road 7	
7.0	Site Plan Review	
8.0	Parking and Loading Supply Review	
	8.1 Vehicle Parking	
	8.1.1 Accessible Parking	
	8.2 Loading	
9.0	Transportation Demand Management	
10.0	Conclusions	40
	10.1 Traffic Operations	16
	10.1 Traffic Operations 10.2 Site Plan Review	16 16
	10.1 Traffic Operations	16 16 17

Tables

Table 1:	Site Trip Generation	10
Table 2:	Vehicle Trip Distribution	10
Table 3:	Elgin Park Drive / Toronto Street South Signalized Intersection Operations	12
Table 4:	Elgin Park Drive / Confederation Drive / Site Driveway Intersection	
	Operations	13
Table 5:	Elgin Park Drive / Concession Road 7 Intersection Operations	14
Table 6:	ZBL 81-19 Vehicle Parking Requirements	15

Figures

Figure 1:	Site Location	1
Figure 2:	Existing Road Network	4
Figure 3:	GO Transit Route Map	5
Figure 4:	Existing Traffic Volumes	6
Figure 5:	Future Active Transportation Road Network	7
Figure 6:	2028 Background Traffic Volumes	8
Figure 7:	Site Plan	9
Figure 8:	Site Trips1	0
Figure 9:	2028 Total Traffic Volumes1	1

Appendices

Appendix A	Traffic Counts and Signal Timing Plans
Appendix B	Existing Traffic Operations
Appendix C	2028 Background Traffic Operations
Appendix D	2028 Total Traffic Operations
Appendix E	Truck Access Analysis
Appendix F	Zoning By-law 81-19 Excerpts
Appendix G	Traffic By-law 2013-184 Excerpts

Wooden Sticks Golf Club

Wooden Sticks Golf Club Hotel Transportation Study November 2022

Abbreviations

The following summarizes abbreviations that are utilized within this report:

Jurisdiction

- Township—Township of Uxbridge
- Region—Durham Region

Operations Analyses

- LOS—level of service
- v/c—volume to capacity ratio

Traffic Movements

- EB—Eastbound
- SB—Southbound
- NB—Northbound
- WB—Westbound
- L—left-turn
- T—through
- R—right-turn
- LT—shared left-through movement
- LTR—shared left-through-right movement
- TR—shared through-right movement

Other

- ITE—Institute of Transportation Engineers
- LUC—Land Use Code
- TTS—Transportation Tomorrow Survey
- ZBL—Zoning By-law
- ZBA—Zoning By-law Amendment
- TDM—Transportation Demand Management

Disclaimer

Other than by the addressee, copying or distribution of this document, in whole or in part, is not permitted without the express written consent of R.J. Burnside & Associates Limited.

In the preparation of the various instruments of service contained herein, R.J. Burnside & Associates Limited was required to use and rely upon various sources of information (including but not limited to: reports, data, drawings, observations) produced by parties other than R.J. Burnside & Associates Limited. For its part R.J. Burnside & Associates Limited has proceeded based on the belief that the third party/parties in question produced this documentation using accepted industry standards and best practices and that all information was therefore accurate, correct and free of errors at the time of consultation. As such, the comments, recommendations and materials presented in this instrument of service reflect our best judgment in light of the information available at the time of preparation. R.J. Burnside & Associates Limited, its employees, affiliates and subcontractors accept no liability for inaccuracies or errors in the instruments of service provided to the client, arising from deficiencies in the aforementioned third party materials and documents.

R.J. Burnside & Associates Limited makes no warranties, either express or implied, of merchantability and fitness of the documents and other instruments of service for any purpose other than that specified by the contract.

1.0 Introduction

1.1 Background

R.J. Burnside & Associates Limited (Burnside) was retained by Wooden Sticks Golf Club (the Client) to undertake a Transportation Study for a proposed hotel within the Wooden Sticks Golf Course at 40 Elgin Park Drive in the Township of Uxbridge. The main site is currently occupied by a golf course and clubhouse (which contains a banquet hall) and a 79-room hotel is proposed to be built adjacent to the golf course's clubhouse. An existing driving range and maintenance yard is located to the east.

Existing access to the golf course includes two full movement driveways on Elgin Park Drive. One driveway serves the clubhouse and golf course, and the other serves a driving range and maintenance yard. The existing parking lot will be reconfigured and expanded. The site location is illustrated in Figure 1.

Figure 1: Site Location

Burnside prepared this Transportation Study as part of Official Plan Amendment and Zoning By-law Amendment applications.

1.2 Scope of Work

The scope was confirmed with the Township of Uxbridge (Township) and is summarized below.

Analysis Scenarios	 Existing traffic conditions 2028 background traffic conditions (five years after buildout) 2028 total traffic conditions (2028 background traffic plus site traffic)
Analysis Time Periods	 Weekday AM peak hour (7:00 AM – 9:00 AM) Weekday PM peak hour (4:00 PM – 6:00 PM)
Analysis Intersections	 Elgin Park Drive / Toronto Street (Regional Road 47) Elgin Park Drive / Confederation Drive / Existing Driveway Elgin Park Drive / Concession Road 7

The Region's Traffic Impact Study (TIS) Guidelines dated October 2011 were taken into consideration.

1.3 Intersection Analysis Methodology

Signalized and stop controlled intersection operations were assessed for intersections in the study area using the software program Synchro 11, which employs methodology from the *Highway Capacity Manual (HCM 2000, HCM 2010 and HCM 6th)*, published by the Transportation Research Board National Research Council.

Synchro 11 can analyze both signalized and unsignalized intersections in a road corridor or network taking into account the spacing, interaction, queues and operations between intersections. The analysis utilizes the HCM 2000 methodology.

Signalized intersection analysis considers two separate measures of performance:

- The capacity of all intersection movements, which is based on a volume to capacity ratio that is a measure of the degree of capacity utilized.
- The level of service (LOS) for all intersection movements, which is based on the average control delay per vehicle for the various movements through the intersection and overall. Delay is an indicator of how long a vehicle must wait to complete a movement and is represented by a letter between A and F, with F being the longest delay. The link between LOS and delay (in seconds) for signalized intersections is summarized below.

Level of Service	Control Delay per Vehicle(s)
A	≤10
В	> 10 - 20
С	> 20 – 35
D	> 35 – 55
E	> 55 - 80
F	> 80

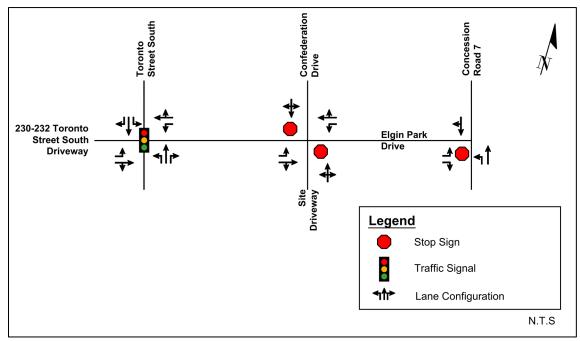
Stop controlled intersection analysis considers two separate measures of performance:

- The capacity of the intersection's critical movements, which is based on a volume to capacity ratio.
- The level of service for the critical movements, which is based on the average control delay per vehicle for the various critical movements within the intersection. The link between LOS and delay (in seconds) for stop-controlled intersections is summarized below.

Level of Service	Control Delay per Vehicle(s)
A	0 - 10
В	> 10 – 15
С	> 15 – 25
D	> 25 – 35
E	> 35 – 50
F	> 50

2.0 Existing Conditions

2.1 Site Context


The site is currently occupied by a golf course and clubhouse with banquet hall. The site is bounded primarily by forest preserve, farmland and low to medium density residential to the west and north.

2.2 Existing Road Network

The existing road network is described below and illustrated in Figure 2, with existing traffic control.

Toronto Street (Durham Regional Road 47) Toronto Street is a north-south Type B arterial road under the jurisdiction of the Region. The roadway consists of a three-lane urban cross-section, including a centre two-way left-turn lane (TWLTL) and has a posted speed limit of 50 km/h. Sidewalks are provided on both sides, while parking is prohibited along both sides of the road.

- Elgin Park Drive Elgin Park Drive is an east-west local road under the jurisdiction of the Township. The roadway has a two-lane rural cross-section with a posted speed limit of 40 km/h. Parking is prohibited on both sides of the road.
- Concession Road 7 Concession Road 7 is a north-south local road under the jurisdiction of the Township. The roadway consists of a two-lane rural cross-section with a posted speed limit of 40 km/h. Parking is prohibited along both sides of the road north of Elgin Park Drive.

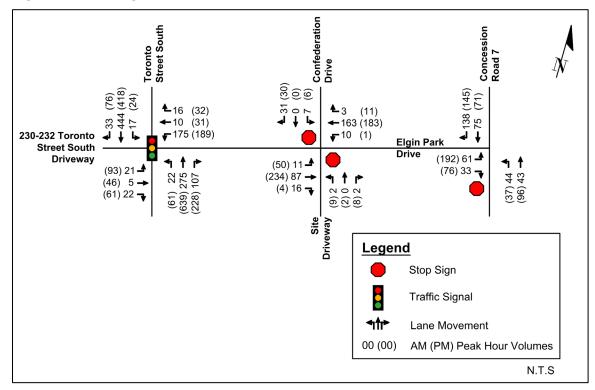
2.3 Existing Active Transportation

There is an existing paved shoulder along the north side of Elgin Park Drive which can be utilized by cyclists.

2.4 Existing Transit

The subject site is located within the Rural On-Demand area for Durham Region Transit (DRT). The DRT On Demand service is a shared ride service, which provides connections from a designated pick-up point (driveway or curb for rural areas) to the nearest local bus route and GO Transit services, which are selected based on the passenger destination and direction of travel.

GO Transit operates two bus routes within the vicinity of the area and both are illustrated in Figure 3. Bus Route No. 70 (Uxbridge-Stouffville-Mount Joy) provides service between the Mount Joy GO Station in Markham to Uxbridge. During the weekday morning and afternoon peak period, the bus provides hourly frequency service. Bus Route No. 71 (Stouffville) provides daily service between Union GO Station in Toronto to Uxbridge. The closest bus stops are located at the intersection of Elgin Park Drive and Toronto Street for GO Transit, which is approximately within 750 m (or a nine-minute walk) from the site.


Figure 3: GO Transit Route Map

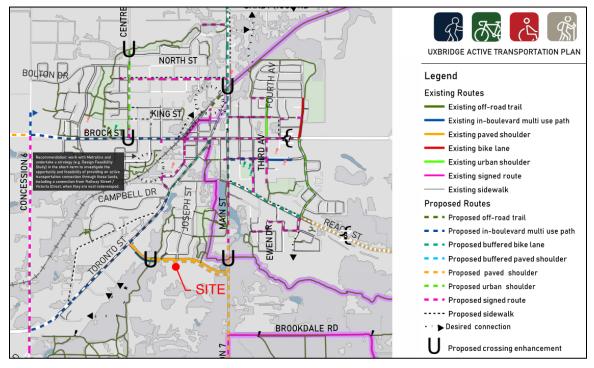
Source: GO Transit Route 70-71 Stouffville Map (September 2022)

2.5 Existing Traffic Volumes

Count data was collected at the three study intersections by Accu-Traffic Inc., on behalf of Burnside, for the weekday morning (7:00 AM - 9:00 AM) and afternoon (4:00 PM - 6:00 PM) peak periods on Wednesday, August 24, 2022. The existing traffic volumes are illustrated in Figure 4 and existing traffic counts and signal timing plans are provided in Appendix A.

Figure 4: Existing Traffic Volumes

3.0 Background Conditions

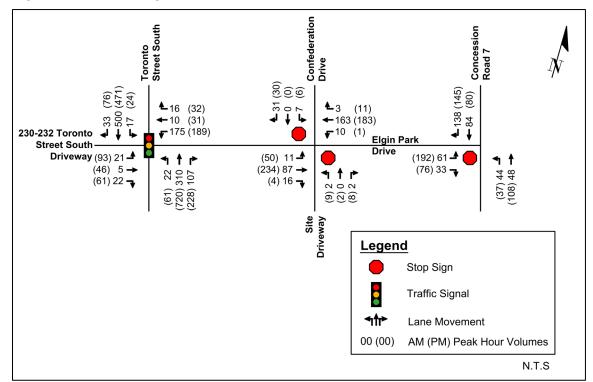

Future background traffic consists of existing traffic, background traffic growth and traffic from other developments. Background traffic growth and traffic from other developments are discussed below, which were confirmed with Township staff. The horizon year of 2028 was selected for future projections, assuming buildout by 2023. There are no future planned road network or transit improvements or other proposed developments within the study horizon year.

3.1 Future Active Transportation

According to the *Uxbridge Active Transportation Plan* (WSP Group, June 2021), the following future active transportation network improvements are proposed within the vicinity of the site as illustrated in Figure 5:

- In-boulevard multi-use path on Toronto Street South.
- Paved Shoulder on south side of Elgin Park Drive.
- Paved Shoulder on Concession Road 7.

Figure 5: Future Active Transportation Road Network


Source: Town Active Transportation Plan, June 2021

3.2 Background Traffic Growth

The average annual daily traffic (AADT) traffic along Toronto Street South and available historical traffic counts were reviewed. An annual background traffic growth of 2% was applied to through traffic volumes on Toronto Street and Concession Road 7.

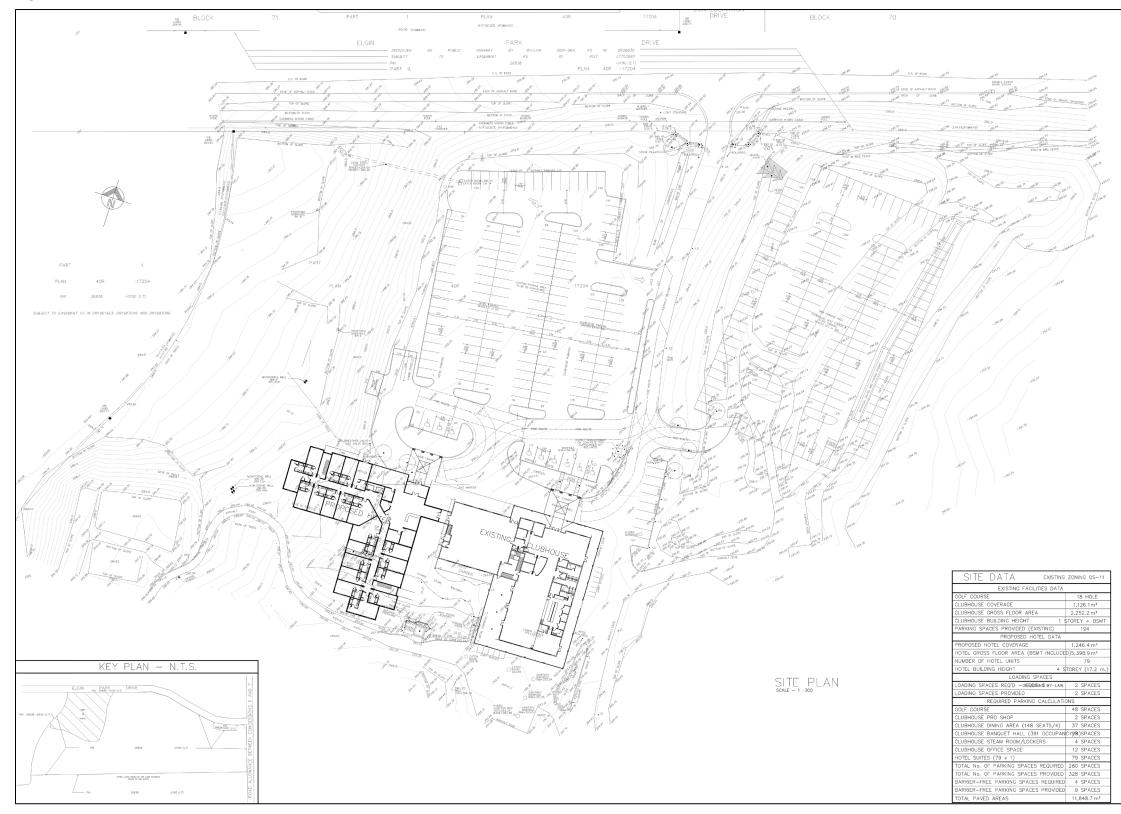
3.3 Background Traffic Volumes

Background traffic volumes consist of the application of traffic growth per annum up to the horizon year 2028 to existing traffic volumes. The resulting 2028 background traffic volumes are illustrated in Figure 6.

4.0 Proposed Development

The proposed development will include the addition of a 79-room hotel. Access is proposed via the existing full movement driveway on Elgin Park Drive. Parking will be provided by an expansion of the existing parking lot. The proposed site plan is shown in Figure 7.

4.1 Trip Generation


Trip generation was based on information contained in the *Trip Generation Manual*, 11th Edition, published by the Institute of Transportation Engineers (ITE). Land Use Code (LUC) 310 (Hotel) was used. No modal split was assumed to be conservative.

The resulting projected trip generation summarized in Table 1.

Wooden Sticks Golf Club

Wooden Sticks Golf Club Hotel Transportation Study November 2022

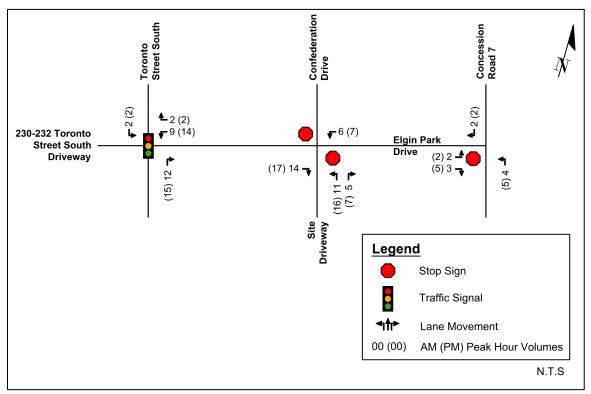
Figure 7: Site Plan

R.J. Burnside & Associates Limited 050895_REP_Wooden Sticks GC Transportation Study

300050985.0003

Table 1: Site Trip Generation

Land Use	Weekday AM Peak Hour			Weekday PM Peak Hour		
	In	Out	Total	In	Out	Total
Hotel (LUC 310) – 79 rooms						
New Trips	20	16	36	24	23	47

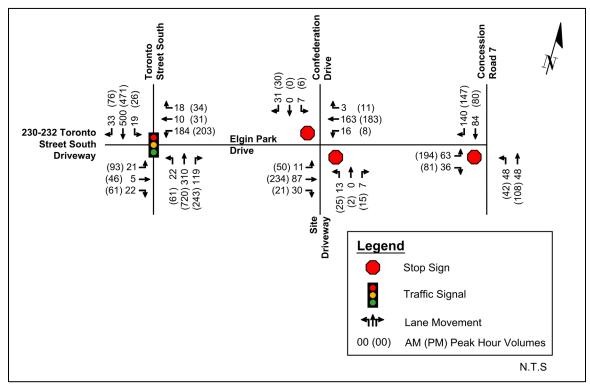

4.2 Trip Distribution and Assignment

Trip distribution and assignment were derived from existing travel patterns and the existing road network. The estimated distribution for site trips is summarized in Table 2 and the resulting vehicle site traffic assignment is shown in Figure 8.

Table 2: Vehicle Trip Distribution

To/From	Via	Distribution
North	Toronto Street South	10%
	Concession Road 7	10%
South	Toronto Street South	60%
	Concession Road 7	20%
	Total	100%

Figure 8: Site Trips



5.0 Total Conditions

5.1 Total Traffic Volumes

Total traffic volumes consist of background traffic volumes in Figure 6 plus site traffic shown in Figure 8. The resulting 2028 total traffic volumes are shown in Figure 9.

Figure 9: 2028 Total Traffic Volumes

6.0 Traffic Operations Analysis

Traffic operations analyses were conducted for existing and future vehicular traffic volumes for the weekday AM and PM peak hours at all study intersections. Queueing was reviewed using Synchro's 95th percentile queues. A comparison of the existing storage and projected queues are summarized for all movements. Detailed Synchro reports are provided in Appendices B to D for each year and condition.

6.1 Elgin Park Drive / Toronto Street South

Existing and future traffic operations at the Elgin Park Drive / Toronto Street South intersection are summarized in Table 3.

Table 3: Elgin Park Drive / Toronto Street South Signalized Intersection	
Operations	

	Existing	Weekda	ay AM Pea	ak Hour	Weekday PM Peak Hour			
Movement	Storage / Link Distance (m)	v/c	LOS	95 th %ile Queue (m)	v/c	LOS	95 th %ile Queue (m)	
Existing Cond	ditions							
Overall	-	0.46	В	-	0.61	В	-	
EBL	25+	0.08	С	8	0.32	С	22	
EBTR	25+	0.03	С	7	0.16	С	16	
WBL	53	0.66	С	43	0.69	С	43	
WBTR	100+	0.04	С	7	0.10	С	12	
NBL	67	0.04	А	5	0.12	А	12	
NBT	300+	0.25	А	37	0.58	В	113	
NBR	50	0.07	А	7	0.16	А	12	
SBL	58	0.03	Α	4	0.07	Α	6	
SBT	300+	0.40	Α	64	0.38	Α	63	
SBR	50	0.02	Α	4	0.05	Α	6	
Background 2028 Conditions								
Overall	-	0.50	В	-	0.66	В	-	
EBL	25+	0.08	С	8	0.32	С	22	
EBTR	25+	0.03	С	7	0.16	С	16	
WBL	53	0.66	С	43	0.69	С	43	
WBTR	100+	0.04	С	7	0.10	С	12	
NBL	67	0.05	А	5	0.13	Α	12	
NBT	300+	0.28	А	42	0.66	В	137	
NBR	50	0.07	Α	7	0.17	Α	14	
SBL	58	0.03	Α	4	0.09	Α	7	
SBT	300+	0.45	А	74	0.43	А	73	
SBR	50	0.02	А	4	0.05	А	6	
Total 2028 Co	onditions							
Overall	-	0.51	В	-	0.68	В	-	
EBL	25+	0.08	С	8	0.30	С	22	
EBTR	25+	0.03	C	6	0.16	С	16	
WBL	53	0.68	C	44	0.70	С	46	
WBTR	100+	0.04	C	7	0.10	C	12	
NBL	67	0.05	A	5	0.13	A B	12	
NBT NBR	300+ 50	0.29	A	43 7	0.67 0.19		147 16	
SBL	50 58	0.08	A A	5	0.19	A A	7	
SBL	300+	0.03	A	76	0.10	A	75	
SBR	50	0.02	A	4	0.05	A	7	

Under existing and future conditions, during both peak hours, all movements are operating and will operate with excess capacity, a level of service (LOS) C or better and queues within their respective storage and link distances.

6.2 Elgin Park Drive / Confederation Drive / Site Driveway

Existing and future traffic operations at the existing site driveway on Elgin Park Drive at Confederation Drive under southbound / northbound stop control are summarized in Table 4.

 Table 4: Elgin Park Drive / Confederation Drive / Site Driveway Intersection

 Operations

	Existing Weekday AM Peak Hour Weekday P					ay PM Pea	ak Hour		
Movement	Storage / Link Distance (m)	v/c	LOS	95 th %ile Queue (m)	v/c	LOS	95 th %ile Queue (m)		
Existing Conditions									
EBL	50	0.01	А	1	0.04	А	1		
WBL	38	0.01	А	1	0.00	А	0		
NBLTR	25+	0.01	В	1	0.04	В	1		
SBLTR	25+	0.05	А	2	0.05	В	2		
Background	Background 2028 Conditions								
EBL	50	0.01	А	1	0.04	А	1		
WBL	38	0.01	A	1	0.00	A	0		
NBLTR	25+	0.01	В	1	0.04	В	1		
SBLTR	25+	0.05	А	2	0.05	В	2		
Total 2028 Co	Total 2028 Conditions								
EBL	50	0.01	A	1	0.04	А	1		
WBL	38	0.01	А	1	0.01	А	1		
NBLTR	25+	0.03	В	1	0.10	В	3		
SBLTR	25+	0.05	А	2	0.05	В	2		

Under existing and future conditions, during both peak hours, all movements are operating and will operate with excess capacity, a level of service (LOS) B or better and queues within their respective storage and link distances.

6.3 Elgin Park Drive / Concession Road 7

Existing and future traffic operations at the Elgin Park Drive / Concession Road 7 intersection under eastbound stop control are summarized in Table 5.

	Existing	Weekda	ay AM Pea	ak Hour	Weekday PM Peak Hour				
Movement	Distance (m)		LOS	95 th %ile Queue (m)	v/c	LOS	95 th %ile Queue (m)		
Existing Conditions									
EBL	35	0.10	В	3	0.31	В	11		
EBR	100+	0.04	Α	1	0.09	А	3		
NBL	25	0.04	Α	1	0.03	А	1		
Background	2028 Conditi	ons							
EBL	35	0.10	В	3	0.32	В	11		
EBR	100+	0.04	Α	1	0.09	А	3		
NBLT	25	0.04	А	1	0.03	А	1		
Total 2028 Co	Total 2028 Conditions								
EBL	35	0.11	В	3	0.33	В	11		
EBR	100+	0.05	А	2	0.10	А	3		
NBLT	25	0.04	Α	1	0.03	А	1		

 Table 5: Elgin Park Drive / Concession Road 7 Intersection Operations

Under existing and future conditions, during both peak hours, all movements are operating and will operate with excess capacity, a level of service (LOS) B or better and queues within their respective storage and link distances.

7.0 Site Plan Review

A high-level review of the proposed site plan was conducted for multi modal circulation and access. The site is well designed to accommodate pedestrians, cyclists, and vehicles. Cyclists can access the site via the existing site driveway.

A truck access analysis for the proposed refuse pick-up / loading space was conducted for a private refuse truck and delivery truck using AutoTURN, which is shown in Appendix E. The analysis confirms that the proposed geometrics will accommodate a refuse truck, which represents the largest expected design vehicle that will visit the site.

8.0 Parking and Loading Supply Review

8.1 Vehicle Parking

A total 328 parking spaces are proposed in the reconfigured existing and new surface parking lot for patron and employee use. The Township's Zoning By-law 81-19 (ZBL) was reviewed to determine the minimum vehicular parking supply required. As the existing site uses are seasonal in nature, two different scenarios were reviewed. The first scenario represents parking requirements for peak operations of the golf course and hotel, whereas the second scenario represents the parking requirements for a

worst-case scenario, which assumes the peak parking demand of the banquet hall was to occur at the same time as the golf course and hotel.

The results of the analysis are summarized below in Table 6 and the applicable excerpts from the ZBL are provided in Appendix F.

Existing & Proposed Use	ZBL Use	Size (Units)	Parking Rate (space per unit)	Minimum Required	Proposed Supply	Surplus / Deficit
Scenario 1: Gol	f Course an	d Hotel				
18 Holes Golf Course (Existing)	Golf Course	18 holes	24 parking spaces for each 9 holes	48	328	+201
Hotel (Proposed)	Hotel	79 rooms	1 space / guest room	79		
			Total	127		
Scenario 2: Gol	f Course, H	otel, and I	Banquet Hall			
18 Holes Golf Course (Existing)	Golf Course	18 holes	24 parking spaces for each 9 holes	48		
Banquet Hall (Existing)	Assembly Hall	391 persons	1 space per 4 persons	98	328	+103
Hotel (Proposed)	Hotel	79 rooms	1 space / guest room	79		
			Total	225		

Table 6: ZBL 81-19 Vehicle Parking Requirements

Based upon the ZBL, the proposed parking supply will result in a surplus of 103 to 201 spaces under a typical or worst-case seasonal scenario.

8.1.1 Accessible Parking

The Township Traffic By-law 2013-184 requires a minimum of five accessible parking spaces to be provided if the proposed parking supply is between 201 to 400 spaces. A total of nine accessible parking spaces are proposed, which exceeds the Township's requirements. An excerpt of the Traffic By-law is provided in Appendix G.

8.2 Loading

The proposed hotel gross floor area (GFA) is 5,398 m². The ZBL requires a minimum of two loading spaces to be provided if the proposed building gross floor area is between

2,300 to 7,500 m² and two loading spaces are proposed, which meets the ZBL requirements.

9.0 Transportation Demand Management

Transportation Demand Management (TDM) is a strategy for promoting active and healthy travel options, encouraging alternative modes of travel such as cycling, carpooling, and public transit and therefore reducing single occupancy vehicle travel.

The Township is encouraged to continue and develop their planned paved shoulders along the south side of Elgin Park Drive and on Concession Road 7, as well as proposed in-boulevard multi-use path on Toronto Street South.

As noted in Section 2.3, the DRT currently offers On-Demand ride share services which provide connections to nearby local bus routes or GO Transit services, as well GO Transit Bus Stops are located nearby within a 10-minute walking distance along Toronto Street South.

It is recommended that the operator of the proposed hotel encourage employees to utilize ridesharing, transit, and cycling where possible.

10.0 Conclusions

10.1 Traffic Operations

Under existing and future conditions at all study intersections, during both peak hours, all movements are operating and will operate with excess capacity, a level of service (LOS) C or better. All existing and future projected queues are within their respective storage lengths or link distances. No road network improvements are required as a result of the development.

10.2 Site Plan Review

A high-level review of the proposed site plan was conducted for multi modal circulation and access. The site is well designed to accommodate pedestrians, cyclists, and vehicles. Cyclists can access the site via the existing site driveway.

A truck access analysis for the proposed refuse pick-up / loading space was conducted for a private refuse truck and delivery truck using AutoTURN. The analysis confirms that the proposed geometrics will accommodate a refuse truck, which represents the largest expected design vehicle that will visit the site.

10.3 Parking and Loading Review

The proposed vehicle parking supply was reviewed under two scenarios; one with peak parking demand for a golf course and hotel and one which assumes the existing banquet hall is operating at the same time. This resulted in a surplus for either scenario between 103 to 201 spaces, which exceeds the ZBL requirements.

It is proposed to provide nine accessible spaces, which will exceed the Township's requirements.

Two loading spaces are proposed, which will meet the ZBL requirements.

10.4 Transportation Demand Management

It is recommended that the following TDM measures to be considered in the future to reduce single occupancy vehicle travel in the study area:

- That the Township implement their planned in-boulevard multi-use path along Toronto Street South and paved shoulders on Elgin Park Drive and Concession Road 7, to facilitate active transportation in the area.
- It is recommended that the operator of the proposed hotel encourage employees to utilize ridesharing, transit and cycling where possible.

Appendix A

Traffic Counts and Signal Timing Plans

TFR File #: 1		Weather condition	s:			
Count date: 24-Aug	9 St S & Elgin Park Dr -22	Weather conditions: Person counted: Person prepared: Person checked:				
** Signalized Interse North Leg Total: 806 North Entering: 494	Ction ** Heavys 0 6 0 6 Trucks 0 6 0 6	Major Road: Toron Heavys 10 Trucks 11	East Leg Total: 330 East Entering: 201			
North Peds: 2 Peds Cross: M	Cars 33 432 17 48 Totals 33 444 17		1 East Peds: 1			
Heavys Trucks Cars Totals 0 0 65 65	Yeway	oronto St S	Cars Trucks Heavys Totals 16 0 0 16 10 0 0 10 173 2 0 175 199 2 0 175			
Heavys Trucks Cars Totals 0 0 21 21 0 0 5 5		E E	Elgin Park Dr			
0 0 22 22 0 0 48	Toronto St S		Cars Trucks Heavys Totals 126 2 1 129			
Peds Cross:XWest Peds:4West Entering:48West Leg Total:113	Trucks 8 Truc Heavys 6 Heav	ars 22 254 104 380 ks 0 11 2 13 ys 0 10 1 11 als 22 275 107				
	Comn	nents				

Afternoon Peak Diagr	am Spe Fro To:):00	One H From: To:	our Pea 16:30:0 17:30:0	0
Municipality:UxbridgeSite #:2215800001Intersection:Toronto St S & Elgin ParkTFR File #:1Count date:24-Aug-22	Dr Per Per	Weather conditions: Person counted: Person prepared: Person checked:				
** Signalized Intersection **	Ma	jor Road	: Toronto	St S runs I	N/S	
North Leg Total:1282Heavys010North Entering:518Trucks02North Peds:2Cars76406Peds Cross:🛏Totals76418	0 10 1 3 23 505 24		eavys 5 Frucks 12 Cars 747 Totals 764	East East	Leg Total: Entering: Peds: Cross:	550 252 5 X
Heavys Trucks Cars Totals 0 0 168 168 driveway	W W	St S	心	Cars True 31 1 31 0 184 4 246 5	sks Heavys 0 0 1 1	5 Totals 32 31 189
Heavys Trucks Cars Totals 0 0 93 93	s		Elgi	n Park Dr		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Toronto St S	企		Cars Truc 294 4	cks Heavys 0	v Totals 298
Peds Cross:XCars650West Peds:9Trucks7West Entering:200Heavys11XWest Leg Total:368Totals668	Cars 61 Trucks 0 Heavys 0 Totals 61	11 5	225 909 3 14 0 5 228	Sout Sout	Cross: n Peds: n Entering: n Leg Total	
	Comments	6		·		

Morning Peak Diagram	Specified Period One Hour Peak From: 7:00:00 From: 8:00:00 To: 9:00:00 To: 9:00:00				
Municipality:UxbridgeSite #:2215800002Intersection:Elgin Park Dr & ConfederationTFR File #:1Count date:24-Aug-22	Weather conditions: Person counted: Person prepared: Person checked:				
** Non-Signalized Intersection **	Major Road: Elgin Park Dr runs W/E				
North Leg Total: 52Heavys000North Entering:38Trucks000North Peds:3Cars3107Peds Cross:Image: Construction of the second	0Heavys0East Leg Total:2720Trucks0East Entering:17638Cars14East Peds:0Totals14Peds Cross:X				
Heavys Trucks Cars Totals 0 2 194 196 Elgin Park Dr	Confederation Dr A $Cars$ $Trucks$ $Heavys$ Tot 3 0 0 3 161 2 0 10 10 10 174 2 0				
Heavys Trucks Cars Totals 0 0 11 11 2 1 84 87	E Elgin Park Dr				
$\begin{array}{c c} 0 & 0 & 16 \\ \hline 2 & 1 & 111 \end{array} \begin{array}{c} 16 \\ \hline \end{array}$	veway				
Peds Cross:XCars26West Peds:0Trucks0West Entering:114Heavys0West Leg Total:310Totals26	Cars 2 0 2 4 Peds Cross: M Trucks 0 0 0 0 South Peds: 0 Heavys 0 0 0 0 South Entering: 4 Totals 2 0 2 South Leg Total: 30				
	Comments				

Afternoon Peak Diagram	Specified Period One Hour Peak From: 16:00:00 From: 16:15:00 To: 18:00:00 To: 17:15:00
Municipality:UxbridgeSite #:2215800002Intersection:Elgin Park Dr & ConfederationTFR File #:1Count date:24-Aug-22	Dr Person counted: Person prepared: Person checked:
** Non-Signalized Intersection **	Major Road: Elgin Park Dr runs W/E
North Leg Total: 99 Heavys 0 0 0 North Entering: 36 Trucks 0 0 0 North Peds: 0 Cars 30 0 6 Peds Cross: ⋈ Totals 30 0 6	0Heavys0East Leg Total:4430Trucks0East Entering:19536Cars63East Peds:1Totals63Peds Cross:X
Heavys Trucks Cars Totals	Confederation Dr Cars Trucks Heavys Totals 11 0 0 179 2 2 1 183 1 191 2 2
Heavys Trucks Cars Totals 0 0 50 500 2 232 234	Elgin Park Dr
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	iveway Cars Trucks Heavys Totals
Peds Cross: X Cars 4 West Peds: 0 Trucks 1 West Entering: 288 Heavys 0 West Leg Total: 510 Totals 5	Cars 8 2 8 18 Peds Cross: ◄ Trucks 1 0 0 1 South Peds: 0 Heavys 0 0 0 0 South Entering: 19 Totals 9 2 8 South Leg Total: 24
	Comments

l

Morning Peak Diagram	Specified Period One Hour Peak From: 7:00:00 From: 8:00:00 To: 9:00:00 To: 9:00:00				
Municipality:UxbridgeSite #:2215800003Intersection:Consession Rd 7 & Elgin ParTFR File #:1Count date:24-Aug-22	Weather conditions: Person counted: Person prepared: Person checked:				
** Non-Signalized Intersection **	Major Road: Consession Rd 7 runs N/S				
North Leg Total:317Heavys00North Entering:213Trucks34North Peds:0Cars13571Peds Cross:Image: Construction of the second seco	0 Heavys 2 7 Trucks 3 206 Cars <u>99</u> Totals 104				
Heavys Trucks Cars Totals	Consession Rd 7				
Elgin Park Dr Heavys Trucks Cars Totals					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ion Rd 7				
Peds Cross:XCars104West Peds:0Trucks4West Entering:94Heavys0West Leg Total:276Totals108	Cars444185Peds Cross:>Trucks011South Peds:0Heavys011South Entering:87Totals4443South Leg Total:195				
· · · ·	Comments				

I

Afternoon Peak Diagram	•	ne Hour Peakrom:17:00:00o:18:00:00				
Municipality:UxbridgeSite #:2215800003Intersection:Consession Rd 7 & Elgin Park DrTFR File #:1Count date:24-Aug-22	Weather conditions: Person counted: Person prepared: Person checked:					
** Non-Signalized Intersection **	Major Road: Consession	Major Road: Consession Rd 7 runs N/S				
North Leg Total: 504Heavys00North Entering:216Trucks20North Peds:0Cars14371Peds Cross:🛏Totals14571	0 Heavys 1 2 Trucks 1 214 Cars 286 Totals 288					
Heavys Trucks Cars Totals	Consession Rd 7					
Elgin Park Dr W Heavys Trucks Cars Totals 0 1 191 192	E S					
0 0 76 76 0 1 267 Consession R	_{d7} ← ↑					
West Entering: 268 Heavys 0 Heavys 0	Cars 36 95 131 Trucks 1 0 1 eavys 0 1 1 Totals 37 96 1	Peds Cross:Image: Constraint of the sector of t				
	nments					

INTERSECTION SIGNAL TIMING REPORT

 Location
 Toronto St. (RHWY 47) and Elgin Park Dr.

 Date
 2022-09-16
 C&E No.
 36324096
 Prepared by
 M.A

 Prepared for
 RJ Burnside
 Example
 Example

AM Peak (06:00-09:00)

	• ‡-	4	-∳⊳	¥
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	C-Max	None	C-Max	None
Maximum Split (s)	40	40	40	40
Maximum Split (%)	50.0%	50.0%	50.0%	50.0%
Minimum Split (s)	31	29	31	29
Yellow Time (s)	3.9	3.7	3.9	3.7
All-Red Time (s)	2.3	2.2	2.3	2.2
Minimum Initial (s)	20	8	20	8
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	7	7	7	7
Flash Dont Walk (s)	17	16	17	16
Intersection Summary				
Cycle Length			80	
Control Type	Actua	ated-Coo	rdinated	
Natural Cycle			60	

Offset: 34.4 (43%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Splits and Phases: 900: TORONTO ST (HWY 47)/TORONTO (HWY 47) & ELGIN PARK

⁻⁴ ₩ø2 (R)	
40 s	40 s
₫ Ø6 (R)	√ Ø8
40 s	40 s

PM Peak (15:00-20:00)

		4		-
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	C-Max	None	C-Max	None
Maximum Split (s)	40	40	40	40
Maximum Split (%)	50.0%	50.0%	50.0%	50.0%
Minimum Split (s)	31	29	31	29
Yellow Time (s)	3.9	3.7	3.9	3.7
All-Red Time (s)	2.3	2.2	2.3	2.2
Minimum Initial (s)	20	8	20	8
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	7	7	7	7
Flash Dont Walk (s)	17	16	17	16
Intersection Summary				
Cycle Length			80	
Control Type	Actua	ated-Coo	rdinated	
Natural Cycle				

Offset: 8.8 (11%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Splits and Phases: 900: TORONTO ST (HWY 47) & ELGIN PARK	(
1 02 (B)	404
40 s	40 s
₽ ₽ Ø6 (R)	₹Ø8
40 s	40 s

Weekend Peak 09:00-19:00

		- 🎝		÷.
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	C-Max	None	C-Max	None
Maximum Split (s)	35	35	35	35
Maximum Split (%)	50.0%	50.0%	50.0%	50.0%
Minimum Split (s)	31	29	31	29
Yellow Time (s)	3.9	3.7	3.9	3.7
All-Red Time (s)	2.3	2.2	2.3	2.2
Minimum Initial (s)	20	8	20	8
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	7	7	7	7
Flash Dont Walk (s)	17	16	17	16
Intersection Summary				
Cycle Length			70	
Control Type	Actua	ated-Coor	rdinated	
Natural Cycle			60	

Offset: 62.3 (89%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Splits and Phases:	900: TORONTO ST (HWY 47)/TORONTO (HW	/Y 47) & ELGIN PARK	
Ø2 (R)		404	
35 s		35 s	
Ø6 (R)		₩ Ø8	
35 s		35 s	

*Please note a concerted effort has been made to ensure the accuracy and completeness of the data provided, however, inadvertent errors or omissions can still occur. Please bring any errors or omissions to the Region's attention.

Appendix B

Existing Traffic Operations

	٦	-	- 🖌	-	1	†	1	×	÷	-	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations	3	4Î	۲	4Î	۲.	•	1	۲	1	1	
Traffic Volume (vph)	21	5	175	10	22	275	107	17	444	33	
uture Volume (vph)	21	5	175	10	22	275	107	17	444	33	
ane Group Flow (vph)	23	29	192	29	24	302	118	19	488	36	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		4		8		2			6		
Permitted Phases	4		8		2		2	6		6	
Detector Phase	4	4	8	8	2	2	2	6	6	6	
Switch Phase			-	-					-		
/inimum Initial (s)	8.0	8.0	8.0	8.0	20.0	20.0	20.0	20.0	20.0	20.0	
/inimum Split (s)	29.0	29.0	29.0	29.0	31.0	31.0	31.0	31.0	31.0	31.0	
Total Split (s)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
fellow Time (s)	3.7	3.7	3.7	3.7	3.9	3.9	3.9	3.9	3.9	3.9	
All-Red Time (s)	2.2	2.2	2.2	2.2	2.3	2.3	2.3	2.3	2.3	2.3	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.9	5.9	5.9	5.9	6.2	6.2	6.2	6.2	6.2	6.2	
.ead/Lag											
ead-Lag Optimize?											
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	
/c Ratio	0.08	0.08	0.67	0.08	0.04	0.25	0.11	0.03	0.40	0.03	
Control Delay	23.3	11.2	39.7	13.7	7.3	7.8	2.0	7.2	9.1	2.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.3	11.2	39.7	13.7	7.3	7.8	2.0	7.2	9.1	2.6	
Queue Length 50th (m)	2.9	0.6	27.0	1.3	1.2	17.3	0.0	0.9	31.4	0.0	
Queue Length 95th (m)	7.6	6.1	42.7	6.8	4.8	36.6	6.4	4.0	63.1	3.4	
nternal Link Dist (m)		34.9		232.2		384.5			284.0		
furn Bay Length (m)			53.0		67.0		52.0	58.0		50.0	
Base Capacity (vph)	602	718	597	742	546	1198	1058	709	1222	1035	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.04	0.04	0.32	0.04	0.04	0.25	0.11	0.03	0.40	0.03	
ntoreaction Summany											
ntersection Summary Cycle Length: 80											
Actuated Cycle Length: 80											
Offset: 34.4 (43%), Reference	ed to pha	a 2∙NRT	and 6.9	BTI Sta	rt of Gree	n					
Vatural Cycle: 60		56 Z.IND I		DTL, Sta		1					
Control Type: Actuated-Coo	rdinated										
Splits and Phases: 1: Tore	onto Street	t South &	230-232	Toronto S	Street Sou	th Drivew	/ay/Elgin	Park Driv	e		
√ Ø2 (R)					4	104					
40 s					40 s						
ac (a)											
▼ Ø6 (R)					₩	Ø8					
HU S					40 s						

	≯		~	1	+	•	•	ŧ	*	~	T	1
Manage 1	EBL	FOT		▼ MDI	MDT	-	NDI	NDT		0.01		-
Movement		EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ň 21	_î⊧	22	<u></u>	A	16	<u></u>	1	1	<u></u>	† 444	5
Traffic Volume (vph) Future Volume (vph)	21	5 5	22	175 175	10 10	16	22 22	275 275	107 107	17 17	444	3
	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Ideal Flow (vphpl)	5.9	5.9	1900	5.9	5.9	1900	6.2	6.2	6.2	6.2	6.2	6.
Total Lost time (s) Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	0. 1.0
Frob. ped/bikes	1.00	0.98		1.00	0.99		1.00	1.00	0.98	1.00	1.00	0.9
have as	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.0
Flpb, ped/bikes Frt	1.00	0.88		1.00	0.91		1.00	1.00	0.85	1.00	1.00	0.8
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.0
Satd. Flow (prot)	1819	1652		1804	1717		1819	1865	1582	1823	1902	159
Flt Permitted	0.74	1.00		0.74	1.00		0.44	1.00	1.00	0.58	1.00	1.0
Satd. Flow (perm)	1414	1652		1402	1717		0.44 850	1865	1582	1105	1902	159
. ,			0.04			0.04						
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.9
Adj. Flow (vph)	23	5	24	192	11	18	24	302	118	19	488	3
RTOR Reduction (vph)	0	19	0	0	14	0	0	0	42	0	0	1
Lane Group Flow (vph)	23	10	0	192	15	0	24 4	302	76	19	488	2
Confl. Peds. (#/hr)	2 0%	0%	1 0%	1 1%	0%	2 0%	4	3%	1 1%	1 0%	4.0/	09
Heavy Vehicles (%)			0%			0%					1%	
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perr
Protected Phases		4		0	8		•	2	0	0	6	
Permitted Phases	4	40.5		8	40.5		2	54.4	2	6	54.4	54
Actuated Green, G (s)	16.5	16.5		16.5	16.5		51.4	51.4	51.4	51.4	51.4	51.4
Effective Green, g (s)	16.5	16.5		16.5	16.5		51.4	51.4	51.4	51.4	51.4	51.
Actuated g/C Ratio	0.21	0.21		0.21	0.21		0.64	0.64	0.64	0.64	0.64	0.6
Clearance Time (s)	5.9	5.9		5.9	5.9		6.2	6.2	6.2	6.2	6.2	6.
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.
Lane Grp Cap (vph)	291	340		289	354		546	1198	1016	709	1222	102
v/s Ratio Prot		0.01			0.01			0.16			c0.26	
v/s Ratio Perm	0.02			c0.14			0.03		0.05	0.02		0.0
v/c Ratio	0.08	0.03		0.66	0.04		0.04	0.25	0.07	0.03	0.40	0.0
Uniform Delay, d1	25.6	25.4		29.2	25.4		5.3	6.1	5.4	5.2	6.9	5.
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.0
Incremental Delay, d2	0.1	0.0		5.7	0.0		0.2	0.5	0.1	0.1	1.0	0.
Delay (s)	25.7	25.4		34.9	25.5		5.4	6.6	5.5	5.3	7.9	5.
Level of Service	С	С		С	С		А	А	А	А	A	
Approach Delay (s)		25.5			33.6			6.3			7.6	
Approach LOS		С			С			A			A	
Intersection Summary												
HCM 2000 Control Delay			12.4	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	ratio		0.46									
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)			12.1			
Intersection Capacity Utilization	ı		59.4%	IC	U Level o	of Service			В			
Analysis Period (min)			15									

050985_ALL SCENARIOS.syn R.J Burnside & Associates Synchro 11 Report 09/22/2022 - Page 2

	onfedera											
	≯	→	\mathbf{r}	1	-	•	1	Ť	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	4Î		7	4Î			¢			\$	
Traffic Volume (veh/h)	11	87	16	10	163	3	2	0	2	7	0	31
Future Volume (Veh/h)	11	87	16	10	163	3	2	0	2	7	0	31
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	12	96	18	11	179	3	2	0	2	8	0	34
Pedestrians											3	
Lane Width (m)											3.7	
Walking Speed (m/s)											1.1	
Percent Blockage											0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	185			114			364	336	105	328	344	184
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	185			114			364	336	105	328	344	184
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			99			100	100	100	99	100	96
cM capacity (veh/h)	1398			1488			564	577	955	617	571	862
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	12	114	11	182	4	42						
Volume Left	12	0	11	0	2	8						
Volume Right	0	18	0	3	2	34						
cSH	1398	1700	1488	1700	709	801						
Volume to Capacity	0.01	0.07	0.01	0.11	0.01	0.05						
Queue Length 95th (m)	0.2	0.0	0.2	0.0	0.1	1.3						
Control Delay (s)	7.6	0.0	7.4	0.0	10.1	9.7						
Lane LOS	А		Α		В	А						
Approach Delay (s)	0.7		0.4		10.1	9.7						
Approach LOS					В	А						
Intersection Summary												
Average Delay			1.7									
Intersection Capacity Utiliza	tion		19.2%	IC	U Level o	of Service			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 3: Concession Road 7 & Elgin Park Drive 2022 Existing AM

	۶	\mathbf{r}	1	t	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
ane Configurations	<u></u>	1	۲.	•	۹ ۱		
raffic Volume (veh/h)	61	33	44	43	75	138	
uture Volume (Veh/h)	61	33	44	43	75	138	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	
Hourly flow rate (vph)	67	36	48	47	82	152	
Pedestrians			10		02	102	
_ane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
/C, conflicting volume	301	158	234				
C1, stage 1 conf vol		100	201				
C2, stage 2 conf vol							
/Cu, unblocked vol	301	158	234				
C, single (s)	6.4	6.2	4.1				
C, 2 stage (s)	0.1	0.2	4.1				
= (s)	3.5	3.3	2.2				
00 queue free %	90	96	96				
cM capacity (veh/h)	660	893	1345				
1 3 ()				NB 2	004		
lirection, Lane #	EB 1	EB 2	NB 1		SB 1		
/olume Total	67	36	48	47	234		
/olume Left	67	0 36	48	0	0		
/olume Right	0 660		0	0	152 1700		
SH /slume te Cenesitu		893 0.04	1345	1700 0.03	0.14		
/olume to Capacity	0.10		0.04				
Queue Length 95th (m)	2.6	1.0	0.8	0.0	0.0		
Control Delay (s)	11.1	9.2	7.8	0.0	0.0		
ane LOS	B	А	A 3.9		0.0		
opproach Delay (s)	10.4		3.9		0.0		
pproach LOS	В						
tersection Summary							
verage Delay			3.3				
ntersection Capacity Utilizat	tion		29.1%	IC	CU Level of	Service	А
Analysis Period (min)			15				

050985_ALL SCENARIOS.syn R.J Burnside & Associates Synchro 11 Report 09/22/2022 - Page 3 050985_ALL SCENARIOS.syn R.J Burnside & Associates Synchro 11 Report 09/22/2022 - Page 4

	٦	-	1	-	1	t	۲	1	Ļ	~	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	۲	4Î	۲	4Î	۲.	1	1	۲	•	1	
Traffic Volume (vph)	93	46	189	31	61	639	228	24	418	76	
Future Volume (vph)	93	46	189	31	61	639	228	24	418	76	
Lane Group Flow (vph)	99	114	201	67	65	680	243	26	445	81	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		4		8		2			6		
Permitted Phases	4		8	-	2		2	6		6	
Detector Phase	4	4	8	8	2	2	2	6	6	6	
Switch Phase			Ŭ	Ŭ	-	-	-	Ŭ	Ū	U	
Minimum Initial (s)	8.0	8.0	8.0	8.0	20.0	20.0	20.0	20.0	20.0	20.0	
Minimum Split (s)	29.0	29.0	29.0	29.0	31.0	31.0	31.0	31.0	31.0	31.0	
Total Split (s)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	30.0 %	3.7	3.7	3.7	3.9	3.9	3.9	3.9	3.9	3.9	
All-Red Time (s)	2.2	2.2	2.2	2.2	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	2.3	2.3	2.3	2.3	2.3	2.3	
Total Lost Time (s)	5.9	5.9	5.9	5.9	6.2	6.2	6.2	6.2	6.2	6.2	
Lead/Lag	5.9	5.9	0.9	0.9	0.2	0.2	0.2	0.2	0.2	0.2	
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	
v/c Ratio	0.32	0.26		0.16	0.12	0.58	0.23				
	26.4	12.3	0.69 39.6	13.4	8.9	13.1	2.5	0.07 9.0	0.38 10.0	0.08 2.6	
Control Delay											
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	26.4	12.3	39.6	13.4	8.9	13.1	2.5	9.0	10.0	2.6	
Queue Length 50th (m)	12.6	6.0	28.2	4.0	3.6	54.5	1.3	1.4	29.8	0.0	
Queue Length 95th (m)	21.9	15.7	42.9	11.4	11.4	112.1	12.0	5.9	62.4	5.9	
Internal Link Dist (m)		34.9	=0.0	232.2	07.0	384.5	=0.0	50.0	284.0	= 0 0	
Turn Bay Length (m)	=0.4		53.0	==0	67.0		52.0	58.0		50.0	
Base Capacity (vph)	581	770	546	756	552	1168	1057	350	1168	1008	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.17	0.15	0.37	0.09	0.12	0.58	0.23	0.07	0.38	0.08	
Intersection Summary		_		_		_	_	_			
Cycle Length: 80											
Actuated Cycle Length: 80											
Offset: 8.8 (11%), Reference	ed to phase	e 2·NBTI	and 6.SE	TI Start	of Green						
Natural Cycle: 60			0.00		01 010011						
Control Type: Actuated-Cod	rdinated										
55	anatod										
Splits and Phases: 1: To	onto Stree	t South &	230-232	Toronto S	Street Sou	th Drivew	av/Flgin	Park Driv	e		
	0.10 0000	South	200 202	. 510110 0			s, Eight		•		
Ø2 (R)						Ø4					
40 s					40 s						
A					- +						
♥ Ø6 (R)					V	Ø8					
40 s					40 s						

	≯	-	\mathbf{r}	1	-	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	٦.	4Î		۲	ĥ		ň	↑	1	ň		7
Traffic Volume (vph)	93	46	61	189	31	32	61	639	228	24	418	70
Future Volume (vph)	93	46	61	189	31	32	61	639	228	24	418	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	5.9	5.9		5.9	5.9		6.2	6.2	6.2	6.2	6.2	6.
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.0
Frpb, ped/bikes	1.00	0.98		1.00	0.99		1.00	1.00	0.97	1.00	1.00	0.9
Flpb, ped/bikes	1.00	1.00		0.99	1.00		0.99	1.00	1.00	1.00	1.00	1.0
Frt	1.00	0.91		1.00	0.92		1.00	1.00	0.85	1.00	1.00	0.8
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.0
Satd. Flow (prot)	1819	1720		1779	1727		1811	1883	1571	1751	1883	157
Flt Permitted	0.71	1.00		0.68	1.00		0.47	1.00	1.00	0.31	1.00	1.0
Satd. Flow (perm)	1366	1720		1280	1727		890	1883	1571	564	1883	157
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.9
Adj. Flow (vph)	99	49	65	201	33	34	65	680	243	26	445	8
RTOR Reduction (vph)	0	50	0	0	26	0	0	000	83	0	0	3
Lane Group Flow (vph)	99	64	0	201	41	0	65	680	160	26	445	5
Confl. Peds. (#/hr)	2	04	4	4	71	2	9	000	5	5	++5	5
Heavy Vehicles (%)	0%	0%	1%	2%	0%	3%	0%	2%	1%	4%	2%	09
Turn Type	Perm	NA	170	Perm	NA	570	Perm	NA	Perm	Perm	NA	Perr
Protected Phases	Feilii	4		Feilii	8		Feilii	2	Feilli	Feilii	6	Fell
Permitted Phases	4	4		8	0		2	2	2	6	0	
Actuated Green, G (s)	18.3	18.3		18.3	18.3		49.6	49.6	49.6	49.6	49.6	49.
Effective Green, g (s)	18.3	18.3		18.3	18.3		49.6	49.6	49.6	49.6	49.6	49.
Actuated g/C Ratio	0.23	0.23		0.23	0.23		0.62	0.62	0.62	0.62	0.62	0.6
Clearance Time (s)	5.9	5.9		5.9	5.9		6.2	6.2	6.2	6.2	6.2	6.
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.
Lane Grp Cap (vph)	312	393		292	395		551	1167	974	349	1167	
v/s Ratio Prot	312	0.04		292	0.02		551	c0.36	974	349	0.24	97
	0.07	0.04		-0.16	0.02		0.07	CU.30	0.10	0.05	0.24	0.0
v/s Ratio Perm		0.16		c0.16	0.10		0.07	0.59	0.10 0.16	0.05	0.20	0.0
v/c Ratio	0.32	0.16		0.69	0.10		0.12	0.58		0.07	0.38	0.0
Uniform Delay, d1	25.7	24.7		28.2	24.4		6.2	9.0	6.4	6.1	7.6	6.
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.0
Incremental Delay, d2	0.6	0.2		6.6	0.1		0.4	2.1	0.4	0.4	0.9	0.
Delay (s)	26.2	24.9		34.8	24.5		6.7	11.2	6.8	6.5	8.5	6.
Level of Service	С	C		С	C		А	B	A	A	A	
Approach Delay (s)		25.5			32.3 C			9.8 A			8.1 A	
Approach LOS		С			U			A			A	
Intersection Summary												
HCM 2000 Control Delay			14.0	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	ratio		0.61									
Actuated Cycle Length (s)			80.0	Si	um of lost	time (s)			12.1			
Intersection Capacity Utilization	1		78.0%	IC	U Level o	of Service			D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis

050985_ALL SCENARIOS.syn R.J Burnside & Associates Synchro 11 Report 09/22/2022 - Page 2

2022 Existing PM

	≯	-	~	~	+	×.	•	Ť	1		T	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	۱ NBL	NBT	NBR	SBL	▼ SBT	SBR
	<u></u>		EDR			WDR	INDL		INDIN	SDL		JDN
Lane Configurations Traffic Volume (veh/h)	50	1 ≱ 234	4	ň 1	₽ 183	11	9	4	8	6	4) 0	30
Future Volume (Veh/h)	50	234	4	1	183	11	9	2	8	6	0	30
Sign Control	50	Free	4		Free		3	Stop	0	0	Stop	50
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	53	246	4	1	193	12	9	2	8	6	0.00	32
Pedestrians	00	210	- 1		100	12	0	-	Ŭ	Ŭ	Ū	02
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Jpstream signal (m)												
X, platoon unblocked												
C, conflicting volume	205			250			581	561	248	562	557	199
/C1, stage 1 conf vol												
/C2, stage 2 conf vol												
/Cu, unblocked vol	205			250			581	561	248	562	557	199
C, single (s)	4.1			4.1			7.2	6.5	6.2	7.1	6.5	6.2
C, 2 stage (s)												
F (s)	2.2			2.2			3.6	4.0	3.3	3.5	4.0	3.3
0 queue free %	96			100			98	100	99	99	100	96
cM capacity (veh/h)	1378			1327			383	422	796	422	424	847
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
/olume Total	53	250	1	205	19	38						
/olume Left	53	0	1	0	9	6						
/olume Right	0	4	0	12	8	32						
SH	1378	1700	1327	1700	496	731						
/olume to Capacity	0.04	0.15	0.00	0.12	0.04	0.05						
Queue Length 95th (m)	0.9	0.0	0.0	0.0	0.9	1.2						
Control Delay (s)	7.7	0.0	7.7	0.0	12.5	10.2						
ane LOS	A		A		B	В						
Approach Delay (s) Approach LOS	1.3		0.0		12.5 B	10.2 B						
ntersection Summary												
Average Delay			1.8									
ntersection Capacity Utiliza	tion		29.2%	IC	U Level o	of Service			A			
Analysis Period (min)			15									

2022 Existing PM

	≯	`	٩.	T	Ŧ	∢		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
ane Configurations	۲	1	٦	•	ĥ			
raffic Volume (veh/h)	192	76	37	96	71	145		
uture Volume (Veh/h)	192	76	37	96	71	145		
ign Control	Stop			Free	Free			
Grade	0%			0%	0%			
eak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
ourly flow rate (vph)	202	80	39	101	75	153		
Pedestrians								
ane Width (m)								
Valking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Nedian type				None	None			
Median storage veh)								
Jpstream signal (m)								
X, platoon unblocked								
C, conflicting volume	330	152	228					
C1, stage 1 conf vol								
/C2, stage 2 conf vol								
Cu, unblocked vol	330	152	228					
C, single (s)	6.4	6.2	4.1					
C, 2 stage (s)								
F (s)	3.5	3.3	2.2					
0 queue free %	69	91	97					
M capacity (veh/h)	647	900	1334					
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	SB 1		 	
olume Total	202	80	39	101	228		 	_
olume Left	202	0	39	0	0			
/olume Right	0	80	0	0	153			
SH	647	900	1334	1700	1700			
olume to Capacity	0.31	0.09	0.03	0.06	0.13			
Queue Length 95th (m)	10.1	2.2	0.7	0.0	0.0			
Control Delay (s)	13.1	9.4	7.8	0.0	0.0			
ane LOS	В	А	А					
pproach Delay (s)	12.0		2.2		0.0			
Approach LOS	В							
ntersection Summary								
/erage Delay			5.7					
ntersection Capacity Utilization	on		36.6%	IC	U Level of	Service	А	
Analysis Period (min)			15					

050985_ALL SCENARIOS.syn R.J Burnside & Associates Synchro 11 Report 09/22/2022 - Page 3 050985_ALL SCENARIOS.syn R.J Burnside & Associates

Appendix C

2028 Background Traffic Operations

	٦	-	4	+	1	Ť	1	1	Ŧ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	۲	4Î	5	¢Î,	5	1	1	ሻ	•	1	
Traffic Volume (vph)	21	5	175	10	22	310	107	17	500	33	
Future Volume (vph)	21	5	175	10	22	310	107	17	500	33	
Lane Group Flow (vph)	23	29	192	29	24	341	118	19	549	36	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		4		8		2			6		
Permitted Phases	4		8	-	2		2	6	-	6	
Detector Phase	4	4	8	8	2	2	2	6	6	6	
Switch Phase			-					-	-		
Minimum Initial (s)	8.0	8.0	8.0	8.0	20.0	20.0	20.0	20.0	20.0	20.0	
Minimum Split (s)	29.0	29.0	29.0	29.0	31.0	31.0	31.0	31.0	31.0	31.0	
Total Split (s)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.9	3.9	3.9	3.9	3.9	3.9	
All-Red Time (s)	2.2	2.2	2.2	2.2	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.9	5.9	5.9	5.9	6.2	6.2	6.2	6.2	6.2	6.2	
Lead/Lag	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2	0.2	0.2	
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	
v/c Ratio	0.08	0.08	0.67	0.08	0.05	0.28	0.11	0.03	0.45	0.03	
Control Delay	23.3	11.2	39.7	13.7	7.4	8.0	2.0	7.2	9.7	2.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.3	11.2	39.7	13.7	7.4	8.0	2.0	7.2	9.7	2.6	
Queue Length 50th (m)	2.9	0.6	27.0	1.3	1.2	19.9	0.0	0.9	36.9	0.0	
Queue Length 95th (m)	7.6	6.1	42.7	6.8	4.8	41.7	6.4	4.0	73.6	3.4	
Internal Link Dist (m)		34.9		232.2		384.5	0.1		284.0	0	
Turn Bay Length (m)		00	53.0	LULIL	67.0	001.0	52.0	58.0	20110	50.0	
Base Capacity (vph)	602	718	597	742	495	1198	1058	679	1222	1035	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.04	0.04	0.32	0.04	0.05	0.28	0.11	0.03	0.45	0.03	
	0.01	0.01	0.02	0.01	0.00	0.20	0	0.00	0.10	0.00	
Intersection Summary											
Cycle Length: 80											
Actuated Cycle Length: 80	and to ph-		and GrO		t of Cross	-					
Offset: 34.4 (43%), Referen	ceu to pria	SE Z.INB I	L and 0:5	DIL, Sta	IL UI GIEE						
Natural Cycle: 60	rdinated										
Control Type: Actuated-Coo	runated										
Splits and Phases: 1: To	ronto Stree	t South &	230-232	Toronto 9	Street Sou	th Drive	/av/Floin	Park Driv	۵		
		Count	200-202		<u>/////////////////////////////////////</u>		ay/Ligin		0		
Ø2 (R)					- 4	Ø4					
40 s					40 s						
					4						
▼ Ø6 (R)					₩	Ø8					
40 S					40 s						

1: Toronto Street South & 230-232 Toronto Street South Driveway/Elgin Park Drive ۰. 1 ٦ \• ⋞ -+ \mathbf{i} Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations ъ ۴. Traffic Volume (vph) 175 22 310 107 500 21 5 10 33 Future Volume (vph) 21 5 22 175 10 16 22 310 107 17 500 33 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 6.2 Total Lost time (s) 5.9 5.9 5.9 5.9 6.2 6.2 6.2 6.2 6.2 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 0.98 1.00 0.99 1.00 1.00 0.98 1.00 1.00 0.97 Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 1.00 0.88 1.00 0.91 1.00 1.00 1.00 1.00 0.85 0.85 Flt Protected 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 Satd. Flow (prot) 1819 1652 1804 1717 1820 1865 1582 1823 1902 1590 Flt Permitted 0.74 1.00 0.74 1.00 0.40 1.00 1.00 0.55 1.00 1.00 Satd. Flow (perm) 1414 1652 1402 1717 771 1865 1582 1057 1902 1590 Peak-hour factor, PHF 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 Adj. Flow (vph) 23 24 192 11 18 24 341 118 19 549 36 5 RTOR Reduction (vph) 19 14 42 13 0 0 0 0 0 0 0 0 Lane Group Flow (vph) 23 10 0 192 15 0 24 341 76 19 549 23 Confl. Peds. (#/hr) 2 2 4 4 1 0% 0% 0% 0% 0% 0% 3% 1% 0% 1% 0% Heavy Vehicles (%) 1% Turn Type Perm NA NA NA NA Perm Perm Perm Perm Perm Protected Phases 4 8 2 6 Permitted Phases 4 8 2 2 6 Actuated Green, G (s) 16.5 16.5 16.5 16.5 51.4 51.4 51.4 51.4 51.4 51.4 Effective Green, g (s) 16.5 16.5 16.5 16.5 51.4 51.4 51.4 51.4 51.4 51.4 Actuated g/C Ratio 0.21 0.21 0.21 0.21 0.64 0.64 0.64 0.64 0.64 0.64 Clearance Time (s) 5.9 5.9 6.2 6.2 6.2 6.2 5.9 5.9 6.2 6.2 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 291 340 289 354 495 1198 1016 679 1222 1021 v/s Ratio Prot 0.01 0.01 0.18 c0.29 v/s Ratio Perm 0.02 c0.14 0.03 0.02 0.01 0.05 v/c Ratio 0.08 0.03 0.66 0.04 0.05 0.28 0.07 0.03 0.45 0.02 Uniform Delay, d1 25.6 25.4 29.2 25.4 5.3 6.3 5.4 5.2 7.2 5.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.0 5.7 0.0 0.6 0.1 0.0 0.2 0.1 1.2 Delay (s) 25.7 25.4 34.9 25.5 5.5 6.9 5.5 5.3 8.4 5.2 Level of Service С С С С A Α А A Α Α Approach Delay (s) 25.5 33.6 6.5 8.1 Approach LOS С С А А Intersection Summary HCM 2000 Level of Service HCM 2000 Control Delay 12.3 В HCM 2000 Volume to Capacity ratio 0.50 12.1 Actuated Cycle Length (s) 80.0 Sum of lost time (s) Intersection Capacity Utilization 59.4% ICU Level of Service В 15 Analysis Period (min) c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

050985_ALL SCENARIOS.syn R.J Burnside & Associates Synchro 11 Report 09/22/2022 - Page 2

2028 Background AM

	٠		~	~	+	•	•	Ť	*	5	1	7
	-		•	•		-	1		1	-	•	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	<u>þ</u>	10	<u></u>	þ	•	•	4	•	-	4	
Traffic Volume (veh/h)	11	87	16	10	163	3	2	0	2	7	0	31
Future Volume (Veh/h)	11	87	16	10	163	3	2	0	2	7	0	31
Sign Control		Free			Free			Stop			Stop	
Grade	0.04	0%	0.04	0.04	0%	0.04	0.04	0%	0.04	0.04	0%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	12	96	18	11	179	3	2	0	2	8	0	34
Pedestrians											3	
_ane Width (m)											3.7	
Walking Speed (m/s)											1.1	
Percent Blockage											0	
Right turn flare (veh)												
Vledian type		None			None							
Median storage veh)												
Jpstream signal (m)												
oX, platoon unblocked												
/C, conflicting volume	185			114			364	336	105	328	344	184
vC1, stage 1 conf vol												
/C2, stage 2 conf vol												
/Cu, unblocked vol	185			114			364	336	105	328	344	184
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
C, 2 stage (s)												
F (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
0 queue free %	99			99			100	100	100	99	100	96
cM capacity (veh/h)	1398			1488			564	577	955	617	571	862
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
/olume Total	12	114	11	182	4	42						
/olume Left	12	0	11	0	2	8						
/olume Right	0	18	0	3	2	34						
SH	1398	1700	1488	1700	709	801						
Volume to Capacity	0.01	0.07	0.01	0.11	0.01	0.05						
Queue Length 95th (m)	0.2	0.0	0.2	0.0	0.1	1.3						
Control Delay (s)	7.6	0.0	7.4	0.0	10.1	9.7						
ane LOS	А		А		В	А						
Approach Delay (s)	0.7		0.4		10.1	9.7						
Approach LOS					В	A						
ntersection Summary												
Average Delay			1.7									
ntersection Capacity Utilizat	tion		19.2%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

2028 Background AM

	٦	\mathbf{r}	1	t	Ŧ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	۲	1	۲.	•	4Î		
Traffic Volume (veh/h)	61	33	44	48	84	138	
Future Volume (Veh/h)	61	33	44	48	84	138	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	
Hourly flow rate (vph)	67	36	48	53	92	152	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	317	168	244				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	317	168	244				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	90	96	96				
cM capacity (veh/h)	646	881	1334				
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	SB 1		
Volume Total	67	36	48	53	244		
Volume Left	67	0	48	0	0		
Volume Right	0	36	0	0	152		
cSH	646	881	1334	1700	1700		
Volume to Capacity	0.10	0.04	0.04	0.03	0.14		
Queue Length 95th (m)	2.6	1.0	0.9	0.0	0.0		
Control Delay (s)	11.2	9.3	7.8	0.0	0.0		
Lane LOS	В	A	A				
Approach Delay (s)	10.5		3.7		0.0		
Approach LOS	В						
Intersection Summary							
Average Delay			3.3				
Intersection Capacity Utiliza	ation		29.6%	IC	U Level of	Service	
Analysis Period (min)			15				

050985_ALL SCENARIOS.syn R.J Burnside & Associates Synchro 11 Report 09/22/2022 - Page 3 050985_ALL SCENARIOS.syn R.J Burnside & Associates

	٦	-	4	+	1	Ť	1	1	Ŧ	-	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	۲	4Î	<u> </u>	4Î	۲.	•	1	۲	1	1	
Traffic Volume (vph)	93	46	189	31	61	720	228	24	471	76	
Future Volume (vph)	93	46	189	31	61	720	228	24	471	76	
Lane Group Flow (vph)	99	114	201	67	65	766	243	26	501	81	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		4		8		2			6		
Permitted Phases	4		8		2		2	6		6	
Detector Phase	4	4	8	8	2	2	2	6	6	6	
Switch Phase			-					-	-		
Minimum Initial (s)	8.0	8.0	8.0	8.0	20.0	20.0	20.0	20.0	20.0	20.0	
Minimum Split (s)	29.0	29.0	29.0	29.0	31.0	31.0	31.0	31.0	31.0	31.0	
Total Split (s)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.9	3.9	3.9	3.9	3.9	3.9	
All-Red Time (s)	2.2	2.2	2.2	2.2	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.9	5.9	5.9	5.9	6.2	6.2	6.2	6.2	6.2	6.2	
Lead/Lag	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2	0.2	0.2	
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	
v/c Ratio	0.32	0.26	0.69	0.16	0.13	0.66	0.23	0.09	0.43	0.08	
Control Delay	26.4	12.3	39.6	13.4	9.1	15.0	3.0	9.4	10.6	2.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	26.4	12.3	39.6	13.4	9.1	15.0	3.0	9.4	10.6	2.6	
Queue Length 50th (m)	12.6	6.0	28.2	4.0	3.6	66.1	2.6	1.4	35.0	0.0	
Queue Length 95th (m)	21.9	15.7	42.9	11.4	11.6	136.3	14.0	6.1	72.4	5.9	
Internal Link Dist (m)	21.9	34.9	42.9	232.2	11.0	384.5	14.0	0.1	284.0	5.9	
Turn Bay Length (m)		34.9	53.0	232.2	67.0	304.5	52.0	58.0	204.0	50.0	
Base Capacity (vph)	581	770	546	756	505	1168	1048	288	1168	1008	
Starvation Cap Reductn	0	0	040	150	0	0	040	200	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.17	0.15	0.37	0.09	0.13			0.09	0.43	0.08	
Reduced V/C Ratio	0.17	0.15	0.37	0.09	0.13	0.66	0.23	0.09	0.43	0.08	
Intersection Summary											
Cycle Length: 80											
Actuated Cycle Length: 80											
Offset: 8.8 (11%), Reference	ed to phase	e 2:NBTL	and 6:SB	TL, Start	of Green						
Natural Cycle: 65											
Control Type: Actuated-Cod	ordinated										
Splits and Phases: 1: Tor	onto Street	South &	230-232	Toronto S	Street Sou	th Drivew	/ay/Elgin	Park Driv	e		
Ø2 (R)						Ø4					
40 s					40 s						
Ø6 (R)						Ø8					
40 s			_		40.s	20	_	_	_		
					10-0						

 HCM Signalized Intersection Capacity Analysis
 2028 Background PM

 1: Toronto Street South & 230-232 Toronto Street South Driveway/Elgin Park Drive

	۶	-	\mathbf{r}	1	•	×.	1	1	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- T	ef 👘		<u>۲</u>	4Î		<u>۲</u>	↑	1	<u>۳</u>	↑	1
Traffic Volume (vph)	93	46	61	189	31	32	61	720	228	24	471	76
Future Volume (vph)	93	46	61	189	31	32	61	720	228	24	471	76
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.9	5.9		5.9	5.9		6.2	6.2	6.2	6.2	6.2	6.2
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.98		1.00	0.99		1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00		0.99	1.00		0.99	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.91		1.00	0.92		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1819	1720		1779	1727		1813	1883	1571	1752	1883	1576
Flt Permitted	0.71	1.00		0.68	1.00		0.43	1.00	1.00	0.25	1.00	1.00
Satd. Flow (perm)	1366	1720		1280	1727		814	1883	1571	464	1883	1576
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	99	49	65	201	33	34	65	766	243	26	501	81
RTOR Reduction (vph)	0	50	0	0	26	0	0	0	74	0	0	31
Lane Group Flow (vph)	99	64	0	201	41	0	65	766	169	26	501	50
Confl. Peds. (#/hr)	2		4	4		2	9		5	5		9
Heavy Vehicles (%)	0%	0%	1%	2%	0%	3%	0%	2%	1%	4%	2%	0%
Turn Type	Perm	NA	. , 0	Perm	NA	0,0	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1 Cilli	4		1 CIIII	8		1 Gilli	2	1 Cilli	1 GIIII	6	1 Cilli
Permitted Phases	4	-		8	0		2	2	2	6	0	6
Actuated Green, G (s)	18.3	18.3		18.3	18.3		49.6	49.6	49.6	49.6	49.6	49.6
Effective Green, g (s)	18.3	18.3		18.3	18.3		49.6	49.6	49.6	49.6	49.6	49.6
Actuated g/C Ratio	0.23	0.23		0.23	0.23		0.62	0.62	0.62	0.62	0.62	0.62
Clearance Time (s)	5.9	5.9		5.9	5.9		6.2	6.2	6.2	6.2	6.2	6.2
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	312	393		292	395		504	1167	974	287	1167	977
v/s Ratio Prot	312	0.04		292	0.02		504	c0.41	974	207	0.27	911
v/s Ratio Perm	0.07	0.04		c0.16	0.02		0.08	CU.4 I	0.11	0.06	0.27	0.03
v/c Ratio	0.07	0.16		0.69	0.10		0.08	0.66	0.11	0.08	0.43	0.03
Uniform Delay, d1	25.7	24.7		28.2	24.4		6.3	9.7	6.5	6.1	7.9	6.0
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.6	0.2		6.6	0.1		0.5	2.9	0.4	0.6	1.2	0.1
Delay (s)	26.2	24.9		34.8	24.5		6.8	12.6	6.9	6.7	9.0	6.1
Level of Service	С	С		С	С		А	В	А	А	A	A
Approach Delay (s)		25.5			32.3			11.0			8.5	
Approach LOS		С			С			В			А	
Intersection Summary												
HCM 2000 Control Delay			14.4	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.66									
Actuated Cycle Length (s)			80.0		um of lost				12.1			
Intersection Capacity Utilization	ation		78.0%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

050985_ALL SCENARIOS.syn R.J Burnside & Associates

	٦	→	\mathbf{r}	1	+	•	▲	†	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations	٦	f,		٦	el 🗍			4			4	
Traffic Volume (veh/h)	50	234	4	1	183	11	9	2	8	6	0	30
Future Volume (Veh/h)	50	234	4	1	183	11	9	2	8	6	0	30
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	53	246	4	1	193	12	9	2	8	6	0	32
Pedestrians												
_ane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Jpstream signal (m)												
X, platoon unblocked												
C, conflicting volume	205			250			581	561	248	562	557	199
/C1, stage 1 conf vol												
/C2, stage 2 conf vol												
Cu, unblocked vol	205			250			581	561	248	562	557	199
C, single (s)	4.1			4.1			7.2	6.5	6.2	7.1	6.5	6.2
C, 2 stage (s)												
F (s)	2.2			2.2			3.6	4.0	3.3	3.5	4.0	3.3
0 queue free %	96			100			98	100	99	99	100	96
M capacity (veh/h)	1378			1327			383	422	796	422	424	847
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
/olume Total	53	250	1	205	19	38						
/olume Left	53	0	1	0	9	6						
/olume Right	0	4	0	12	8	32						
SH	1378	1700	1327	1700	496	731						
/olume to Capacity	0.04	0.15	0.00	0.12	0.04	0.05						
Queue Length 95th (m)	0.9	0.0	0.0	0.0	0.9	1.2						
Control Delay (s)	7.7	0.0	7.7	0.0	12.5	10.2						
ane LOS	А		Α		В	В						
Approach Delay (s)	1.3		0.0		12.5	10.2						
Approach LOS					В	В						
ntersection Summary												
Average Delay			1.8									
ntersection Capacity Utilizat	ion		29.2%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

2028 Background PM

	۶	\mathbf{r}	1	Ť	÷.	< _	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ň	1	٦	•	۹î ا		
Traffic Volume (veh/h)	192	76	37	108	80	145	
Future Volume (Veh/h)	192	76	37	108	80	145	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Hourly flow rate (vph)	202	80	39	114	84	153	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	352	160	237				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	352	160	237				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	68	91	97				
cM capacity (veh/h)	628	890	1324				
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	SB 1		
Volume Total	202	80	39	114	237		
Volume Left	202	0	39	0	0		
Volume Right	0	80	0	0	153		
cSH	628	890	1324	1700	1700		
Volume to Capacity	0.32	0.09	0.03	0.07	0.14		
Queue Length 95th (m)	10.5	2.2	0.7	0.0	0.0		
Control Delay (s)	13.4	9.4	7.8	0.0	0.0		
Lane LOS	В	А	A				
Approach Delay (s)	12.3		2.0		0.0		
Approach LOS	В						
Intersection Summary							
Average Delay			5.6				
Intersection Capacity Utilizat	tion		37.1%	IC	U Level of S	Service	
Analysis Period (min)			15				
, ,							

050985_ALL SCENARIOS.syn R.J Burnside & Associates Synchro 11 Report 09/22/2022 - Page 3 050985_ALL SCENARIOS.syn R.J Burnside & Associates

Appendix D

2028 Total Traffic Operations

	٦	-	4	-	•	1	1	1	Ŧ	-	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	۲	4Î	<u> </u>	4Î	۲	1	1	۲	1	1	
Traffic Volume (vph)	21	5	184	10	22	310	119	19	500	33	
Future Volume (vph)	21	5	184	10	22	310	119	19	500	33	
Lane Group Flow (vph)	23	29	202	31	24	341	131	21	549	36	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		4		8		2			6		
Permitted Phases	4		8		2		2	6		6	
Detector Phase	4	4	8	8	2	2	2	6	6	6	
Switch Phase			-							-	
Minimum Initial (s)	8.0	8.0	8.0	8.0	20.0	20.0	20.0	20.0	20.0	20.0	
Minimum Split (s)	29.0	29.0	29.0	29.0	31.0	31.0	31.0	31.0	31.0	31.0	
Total Split (s)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.9	3.9	3.9	3.9	3.9	3.9	
All-Red Time (s)	2.2	2.2	2.2	2.2	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.9	5.9	5.9	5.9	6.2	6.2	6.2	6.2	6.2	6.2	
Lead/Lag	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2	0.2	0.2	
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	
v/c Ratio	0.08	0.08	0.68	0.08	0.05	0.29	0.12	0.03	0.45	0.04	
Control Delay	22.8	10.8	39.5	13.0	7.7	8.4	2.0	7.5	10.1	2.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	22.8	10.8	39.5	13.0	7.7	8.4	2.0	7.5	10.1	2.7	
Queue Length 50th (m)	2.8	0.6	28.3	1.3	1.2	20.5	0.0	1.1	37.8	0.0	
Queue Length 95th (m)	7.5	6.0	44.0	6.9	5.0	42.9	6.9	4.4	75.6	3.5	
Internal Link Dist (m)		34.9		232.2	0.0	384.5	0.0		284.0	0.0	
Turn Bay Length (m)		01.0	53.0	LULIL	67.0	00110	52.0	58.0	20110	50.0	
Base Capacity (vph)	601	718	597	739	485	1184	1052	669	1208	1024	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.04	0.04	0.34	0.04	0.05	0.29	0.12	0.03	0.45	0.04	
Intersection Cummon											
Intersection Summary Cycle Length: 80											
Actuated Cycle Length: 80											
Offset: 34.4 (43%), Referen	ced to pha		and 6.9	BTI Sta	rt of Gree	n					
Natural Cycle: 60		36 Z.IND I		57E, 5ld							
Control Type: Actuated-Coc	rdinated										
Splits and Phases: 1: Tor	onto Stree	t South &	230-232	Toronto S	Street Sou	uth Drivew	vay/Elgin	Park Driv	e		
Ø2 (R)					10 -	Ø4					
40 s					40 s						
Ø6 (R)					- X	Ø8					
40 s					40 s						

	٠		\mathbf{i}	~	+	•	•	t	*	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	▼ SBT	SBF
			EDR	VVDL		WDR						307
Lane Configurations Traffic Volume (vph)	21	₽ 5	22	184	1 ∌ 10	18	22	T 310	119	19	† 500	33
Future Volume (vph)	21	5	22	184	10	18	22	310	119	19	500	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
Total Lost time (s)	5.9	5.9	1900	5.9	5.9	1900	6.2	6.2	6.2	6.2	6.2	6.
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.0
Frpb, ped/bikes	1.00	0.98		1.00	0.98		1.00	1.00	0.98	1.00	1.00	0.9
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.0
Fipb, peu/bikes Frt	1.00	0.88		1.00	0.90		1.00	1.00	0.85	1.00	1.00	0.8
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.0
Satd. Flow (prot)	1819	1652		1804	1709		1820	1865	1582	1823	1902	159
Flt Permitted	0.74	1.00		0.74	1.00		0.40	1.00	1.00	0.55	1.00	1.0
Satd. Flow (perm)	1411	1652		1402	1709		765	1865	1582	1053	1902	159
	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.9
Peak-hour factor, PHF				202			24	341				0.9
Adj. Flow (vph) RTOR Reduction (vph)	23 0	5 19	24 0	202	11 16	20 0	24	341	131 48	21 0	549 0	3
	23	19	0	202	15	0	24	341	48 83	21	549	2
Lane Group Flow (vph) Confl. Peds. (#/hr)	23	10	1	202	15	2	4	341	03	21	549	2
Heavy Vehicles (%)	2 0%	0%	0%	1%	0%	2 0%	4	3%	1%	0%	1%	09
			0%	.,		0%			.,.			
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perr
Protected Phases	4	4		0	8		0	2	2	0	6	
Permitted Phases		47.4		8	47.4		2	50.0		6	50.0	50
Actuated Green, G (s)	17.1	17.1		17.1	17.1 17.1		50.8	50.8	50.8	50.8	50.8	50.
Effective Green, g (s)	17.1	17.1		17.1			50.8	50.8	50.8	50.8	50.8	50.
Actuated g/C Ratio	0.21	0.21		0.21	0.21		0.63	0.63	0.63	0.63	0.63	0.6
Clearance Time (s)	5.9	5.9		5.9	5.9		6.2	6.2	6.2	6.2	6.2	6.
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.
Lane Grp Cap (vph)	301	353		299	365		485	1184	1004	668	1207	100
v/s Ratio Prot		0.01			0.01			0.18			c0.29	
v/s Ratio Perm	0.02			c0.14			0.03		0.05	0.02	0.45	0.0
v/c Ratio	0.08	0.03		0.68	0.04		0.05	0.29	0.08	0.03	0.45	0.0
Uniform Delay, d1	25.1	24.9		28.9	25.0		5.5	6.5	5.6	5.4	7.5	5.
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.0
Incremental Delay, d2	0.1	0.0		5.9	0.0		0.2	0.6	0.2	0.1	1.2	0.
Delay (s)	25.2	24.9		34.8	25.0		5.7	7.1	5.8	5.5	8.7	5.
Level of Service	С	С		С	С		A	A	A	A	Α	
Approach Delay (s)		25.1			33.5			6.7			8.4	
Approach LOS		С			С			А			А	
Intersection Summary												
HCM 2000 Control Delay		12.7	H	CM 2000	Level of S	Service		В				
HCM 2000 Volume to Capac	itv ratio		0.51									
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)			12.1			
Intersection Capacity Utilizati	ion		59.4%		U Level o							
Analysis Period (min)		15										

050985_ALL SCENARIOS.syn R.J Burnside & Associates

Synchro 11 Report 09/22/2022 - Page 2

	٦	-	\mathbf{r}	1	-	•	•	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	ĥ		۲	4Î			4			4	
Traffic Volume (veh/h)	11	87	30	16	163	3	13	0	7	7	0	31
Future Volume (Veh/h)	11	87	30	16	163	3	13	0	7	7	0	31
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	12	96	33	18	179	3	14	0	8	8	0	34
Pedestrians											3	
Lane Width (m)											3.7	
Walking Speed (m/s)											1.1	
Percent Blockage											0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	185			129			386	358	112	348	372	184
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	185			129			386	358	112	348	372	184
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			99			97	100	99	99	100	96
cM capacity (veh/h)	1398			1469			544	558	946	593	548	862
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	12	129	18	182	22	42						
Volume Left	12	0	18	0	14	8						
Volume Right	0	33	0	3	8	34						
cSH	1398	1700	1469	1700	643	793						
Volume to Capacity	0.01	0.08	0.01	0.11	0.03	0.05						
Queue Length 95th (m)	0.2	0.0	0.3	0.0	0.8	1.3						
Control Delay (s)	7.6	0.0	7.5	0.0	10.8	9.8						
Lane LOS	А		А		В	А						
Approach Delay (s)	0.6		0.7		10.8	9.8						
Approach LOS					В	A						
Intersection Summary												
Average Delay			2.2									
Intersection Capacity Utiliza	ition		19.2%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

2028 Total AM

۶	\mathbf{r}	•	Ť	Ŧ	∢	
EBL	EBR	NBL	NBT	SBT	SBR	
ľ	1	ľ	•	۹		
63	36	48	48	84	140	
63	36	48	48	84	140	
Stop			Free	Free		
0%			0%	0%		
0.91	0.91	0.91	0.91	0.91	0.91	
69	40	53	53	92	154	
			None	None		
328	169	246				
020		210				
328	169	246				
0.1	0.2					
3.5	33	22				
				00.4		_
2.8		0.9				
11.4		7.8	0.0	0.0		
В	А	Α				
10.6		3.9		0.0		
В						
		3.4				ſ
ion		29.8%	IC	U Level of S	Service	
	EBL 63 63 Stop 0% 0.91 69 69 328 328 328 6.4 3.5 89 634 EB1 69 69 634 0.11 2.8 11.4 B 10.6 B	EBL EBR 63 36 63 36 5top 0% 0.91 0.91 69 40 328 169 328 169 6.4 6.2 3.5 3.3 89 95 6.34 880 EB1 EB2 69 40 634 880 0.11 0.05 1.8 1.1 1.4 9.3 B A 10.6 B	EBL EBR NBL i i' i 63 36 48 63 36 48 Stop 0% 0 0% 0.91 0.91 0.91 0.91 0.91 69 40 53 328 169 246 328 169 246 64 6.2 4.1 3.5 3.3 2.2 89 95 96 634 880 1332 EB 1 EB 2 NB 1 69 40 53 0 40 53 0 40 53 0 40 0.33 0 40 0.40 11.4 9.3 7.8 B A A 10.6 3.9 B B A A 10.6 3.9 B A </td <td>EBL EBR NBL NBT 63 36 48 48 63 36 48 48 63 36 48 48 63 36 48 48 63 36 48 48 63 36 48 48 63 36 48 48 63 36 48 48 63 0.91 0.91 0.91 0.91 69 40 53 53 328 169 246 6.4 6.2 4.1 3.5 3.3 2.2 89 95 96 634 880 1332 EB1 EB2 NB1 NB2 69 40 53 53 69 0 53 0 0 0 0 132 1700 0.11 0.03 2.8 1.1 0.9 0.0 114 9.3 7</td> <td>EBL EBR NBL NBT SBT 63 36 48 48 84 63 36 48 48 84 63 36 48 48 84 63 36 48 48 84 63 36 48 48 84 Stop Free Free Free 6% 0% 0.91 0.91 0.91 0.91 69 69 40 53 53 92 92 328 169 246 None None 328 169 246 </td> <td>EBL EBR NBL NBT SBT SBR 63 36 48 48 84 140 63 36 48 48 84 140 63 36 48 48 84 140 63 36 48 48 84 140 63 36 48 48 84 140 Stop Free Free 7 9 0% 0.91 0.91 0.91 0.91 0.91 69 40 53 53 92 154 None None 328 169 246 </td>	EBL EBR NBL NBT 63 36 48 48 63 36 48 48 63 36 48 48 63 36 48 48 63 36 48 48 63 36 48 48 63 36 48 48 63 36 48 48 63 0.91 0.91 0.91 0.91 69 40 53 53 328 169 246 6.4 6.2 4.1 3.5 3.3 2.2 89 95 96 634 880 1332 EB1 EB2 NB1 NB2 69 40 53 53 69 0 53 0 0 0 0 132 1700 0.11 0.03 2.8 1.1 0.9 0.0 114 9.3 7	EBL EBR NBL NBT SBT 63 36 48 48 84 63 36 48 48 84 63 36 48 48 84 63 36 48 48 84 63 36 48 48 84 Stop Free Free Free 6% 0% 0.91 0.91 0.91 0.91 69 69 40 53 53 92 92 328 169 246 None None 328 169 246	EBL EBR NBL NBT SBT SBR 63 36 48 48 84 140 63 36 48 48 84 140 63 36 48 48 84 140 63 36 48 48 84 140 63 36 48 48 84 140 Stop Free Free 7 9 0% 0.91 0.91 0.91 0.91 0.91 69 40 53 53 92 154 None None 328 169 246

050985_ALL SCENARIOS.syn R.J Burnside & Associates Synchro 11 Report 09/22/2022 - Page 3 050985_ALL SCENARIOS.syn R.J Burnside & Associates

	≯	-	4	+	1	1	1	1	Ŧ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	<u> </u>	¢Î	<u> </u>	4Î	۲	1	1	٦	†	1	
Traffic Volume (vph)	93	46	203	31	61	720	243	26	471	76	
Future Volume (vph)	93	46	203	31	61	720	243	26	471	76	
Lane Group Flow (vph)	99	114	216	69	65	766	259	28	501	81	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	
Protected Phases		4		8		2			6		
Permitted Phases	4		8		2		2	6		6	
Detector Phase	4	4	8	8	2	2	2	6	6	6	
Switch Phase											
Minimum Initial (s)	8.0	8.0	8.0	8.0	20.0	20.0	20.0	20.0	20.0	20.0	
Minimum Split (s)	29.0	29.0	29.0	29.0	31.0	31.0	31.0	31.0	31.0	31.0	
Total Split (s)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.9	3.9	3.9	3.9	3.9	3.9	
All-Red Time (s)	2.2	2.2	2.2	2.2	2.3	2.3	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.9	5.9	5.9	5.9	6.2	6.2	6.2	6.2	6.2	6.2	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	C-Max	C-Max	
v/c Ratio	0.30	0.25	0.70	0.16	0.13	0.67	0.25	0.10	0.44	0.08	
Control Delay	25.3	11.8	39.4	12.6	9.6	16.0	3.2	10.2	11.2	2.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	25.3	11.8	39.4	12.6	9.6	16.0	3.2	10.2	11.2	2.8	
Queue Length 50th (m)	12.4	5.9	30.1	3.9	3.8	68.7	2.9	1.6	36.4	0.0	
Queue Length 95th (m)	21.3	15.4	45.3	11.4	12.0	#146.6	15.1	6.6	74.8	6.1	
Internal Link Dist (m)		34.9		232.2		384.5			284.0		
Turn Bay Length (m)			53.0		67.0		52.0	58.0		50.0	
Base Capacity (vph)	581	770	546	755	490	1146	1037	274	1146	991	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.17	0.15	0.40	0.09	0.13	0.67	0.25	0.10	0.44	0.08	
Intersection Summary											
Cycle Length: 80											
Actuated Cycle Length: 80											
Offset: 8.8 (11%), Reference	d to nhase	2.NRTI	and 6:SB	TL Start	of Green						
Natural Cycle: 65				TE, Otart							
Control Type: Actuated-Coo	rdinated										
 95th percentile volume e 		nacity di	ielle mav	he longe	r						
Queue shown is maximu			iouo may	be longe							
Quodo onominio maxima		, ej elee.									
Splits and Phases: 1: Ton	onto Street	South &	230-232	Toronto S	Street Sou	uth Drivew	vay/Elgin	Park Driv	е		
≜					- A		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Ø2 (R)						Ø4					
40 s					40 s						
Ø6 (R)						 Ø8					
40 -					40.0						

1: Toronto Street South & 230-232 Toronto Street South Driveway/Elgin Park Drive ۰. ٦ 1 ∕⊷ -+ \mathbf{i} Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations ъ î. Traffic Volume (vph) 93 203 61 720 243 471 46 61 31 34 26 76 Future Volume (vph) 93 46 61 203 31 34 61 720 243 26 471 76 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 5.9 5.9 5.9 5.9 6.2 6.2 6.2 6.2 6.2 6.2 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 0.98 1.00 0.99 1.00 1.00 0.97 1.00 1.00 0.97 Flpb, ped/bikes 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 Frt 1.00 0.91 1.00 0.92 1.00 1.00 1.00 1.00 0.85 0.85 Flt Protected 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 Satd. Flow (prot) 1819 1720 1779 1722 1813 1883 1571 1752 1883 1576 Flt Permitted 0.71 1.00 0.68 1.00 0.42 1.00 0.24 1.00 1.00 1.00 Satd. Flow (perm) 1364 1720 1280 1722 805 1883 1571 450 1883 1576 Peak-hour factor, PHF 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 Adj. Flow (vph) 99 49 65 216 33 36 65 766 259 28 501 81 RTOR Reduction (vph) 49 27 81 32 0 0 0 0 0 0 0 0 Lane Group Flow (vph) 99 65 0 216 42 0 65 766 178 28 501 49 Confl. Peds. (#/hr) 2 4 4 2 9 5 5 0% 0% 1% 2% 0% 3% 2% 1% 4% 2% Heavy Vehicles (%) 0% 0% Turn Type NA NA NA NA Perm Perm Perm Perm Perm Perm Protected Phases 4 8 2 6 Permitted Phases 4 8 2 2 6 Actuated Green, G (s) 19.2 19.2 19.2 19.2 48.7 48.7 48.7 48.7 48.7 48.7 Effective Green, g (s) 19.2 19.2 19.2 19.2 48.7 48.7 48.7 48.7 48.7 48.7 Actuated g/C Ratio 0.24 0.24 0.24 0.24 0.61 0.61 0.61 0.61 0.61 0.61 Clearance Time (s) 5.9 5.9 5.9 5.9 6.2 6.2 6.2 6.2 6.2 6.2 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 327 412 307 413 490 1146 956 273 1146 959 v/s Ratio Prot 0.04 0.02 c0.41 0.27 v/s Ratio Perm 0.07 c0.17 0.08 0.06 0.03 0.11 v/c Ratio 0.30 0.16 0.70 0.10 0.13 0.67 0.19 0.10 0.44 0.05 Uniform Delay, d1 24.9 24.0 27.8 23.7 6.7 10.3 6.9 6.5 8.3 6.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.5 0.2 0.1 0.1 7.1 0.6 3.1 0.4 0.8 1.2 Delay (s) 25.4 24.2 34.9 23.8 7.2 13.4 7.3 7.3 9.6 6.4 Level of Service С С С B Α С A А A Α Approach Delay (s) 24.8 32.2 11.6 9.0 Approach LOS С С В А Intersection Summary HCM 2000 Level of Service 14.8 В HCM 2000 Control Delay HCM 2000 Volume to Capacity ratio 0.68 12.1 Actuated Cycle Length (s) 80.0 Sum of lost time (s) Intersection Capacity Utilization 78.8% ICU Level of Service D 15 Analysis Period (min) c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

050985_ALL SCENARIOS.syn R.J Burnside & Associates Synchro 11 Report 09/22/2022 - Page 2

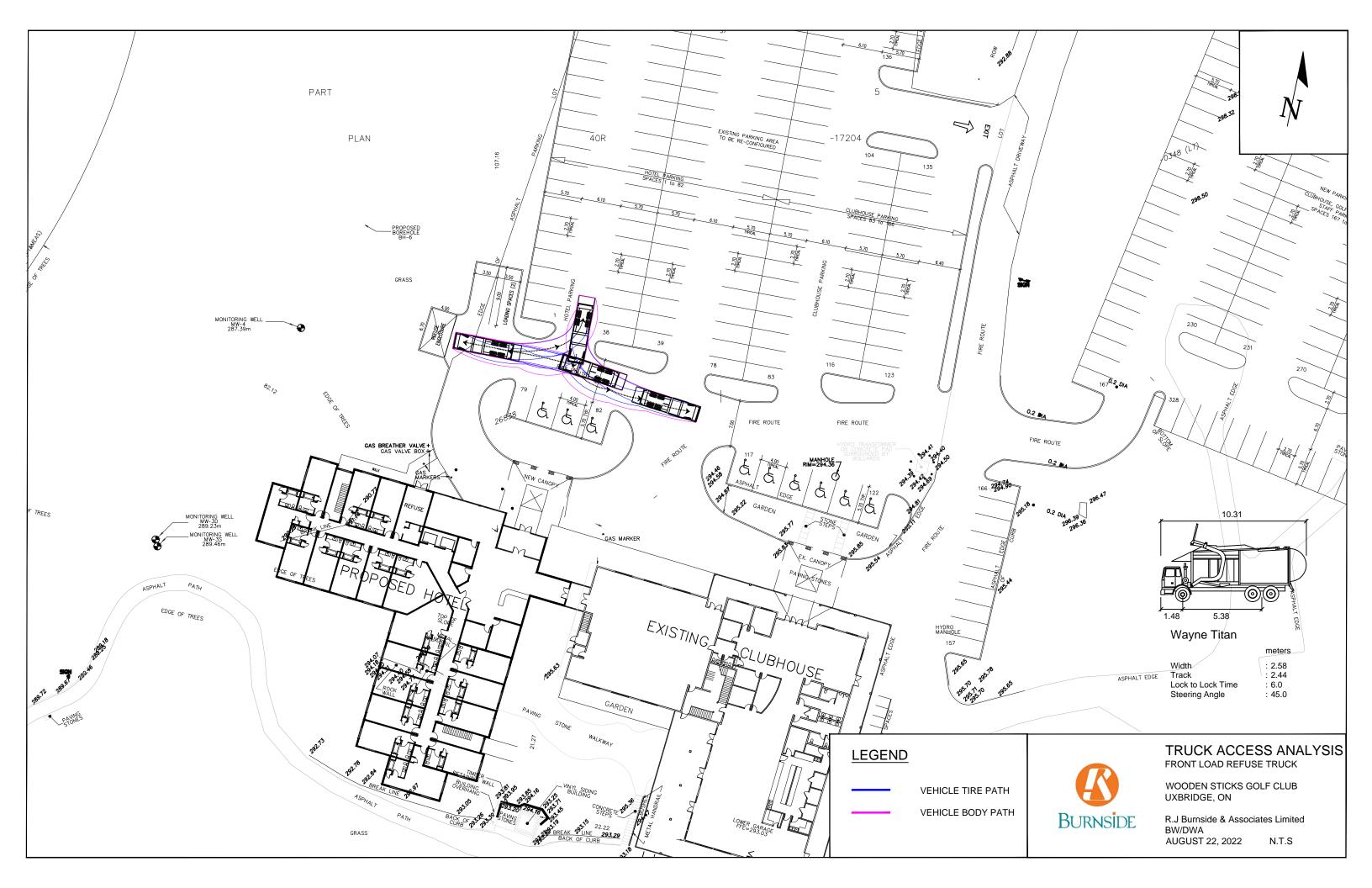
2028 Total PM

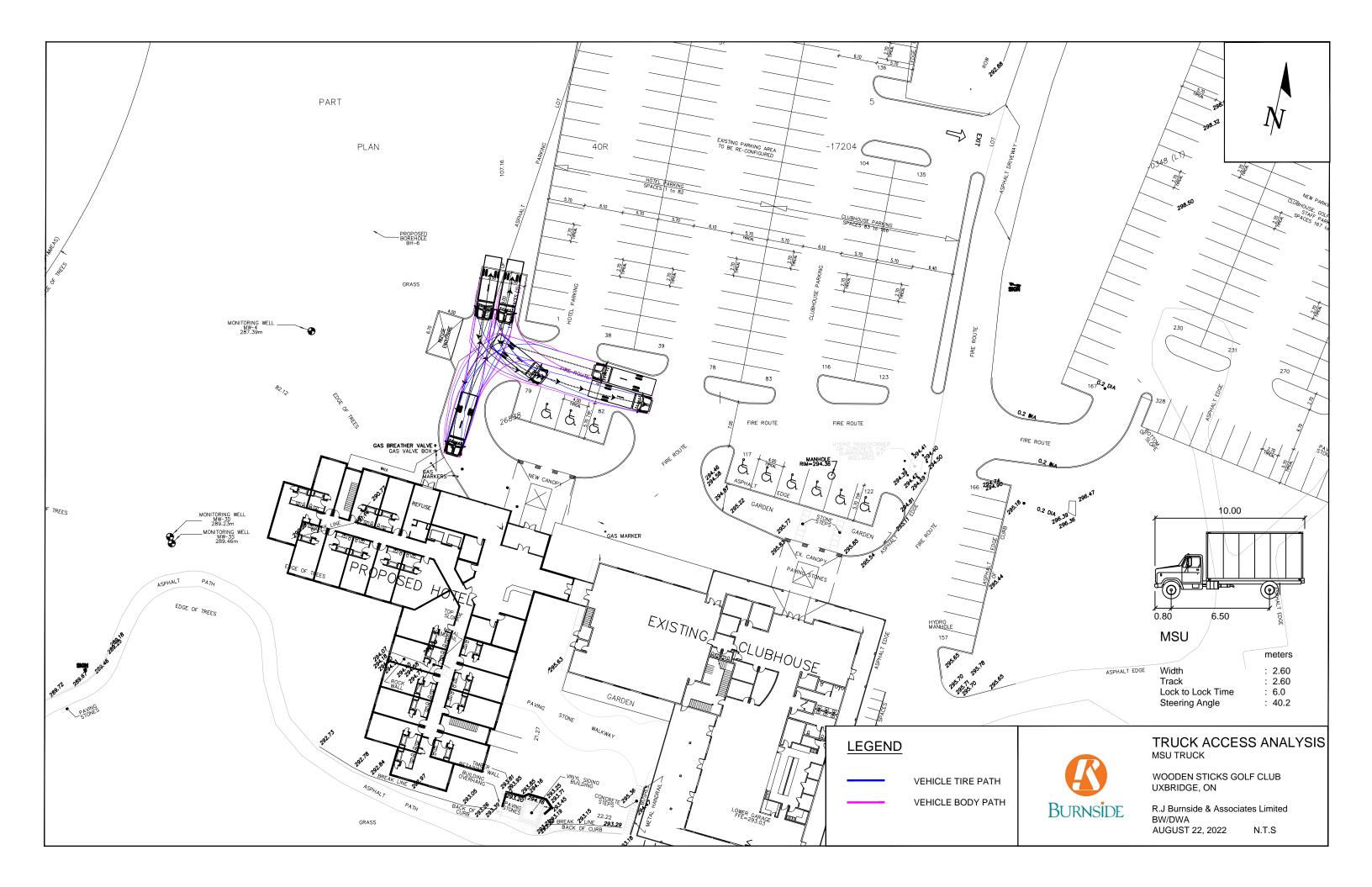
	≯	-	\mathbf{r}	<	-	•	•	Ť	-	1	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	٢	1		۲	1.			4			4	
Traffic Volume (veh/h)	50	234	21	8	183	11	25	2	15	6	0	3
Future Volume (Veh/h)	50	234	21	8	183	11	25	2	15	6	0	3
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Hourly flow rate (vph)	53	246	22	8	193	12	26	2	16	6	0.00	3
Pedestrians	00	210		Ŭ	100	12	20	-	10	Ŭ	Ū	0.
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)		None			Nono							
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	205			268			604	584	257	584	589	19
vC1, stage 1 conf vol	200			200			001	001	201	001	000	10
vC2, stage 2 conf vol												
vCu, unblocked vol	205			268			604	584	257	584	589	19
tC, single (s)	4.1			4.1			7.2	6.5	6.2	7.1	6.5	6.
tC, 2 stage (s)	7.1			7.1			1.2	0.0	0.2	7.1	0.5	0.
tF (s)	2.2			2.2			3.6	4.0	3.3	3.5	4.0	3.
p0 queue free %	96			99			93	100	98	99	100	9
cM capacity (veh/h)	1378			1307			368	407	787	402	405	84
							000	101	101	102	100	01
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	53	268	8	205	44	38						
Volume Left	53	0	8	0	26	6						
Volume Right	0	22	0	12	16	32						
cSH	1378	1700	1307	1700	459	721						
Volume to Capacity	0.04	0.16	0.01	0.12	0.10	0.05						
Queue Length 95th (m)	0.9	0.0	0.1	0.0	2.4	1.3						
Control Delay (s)	7.7	0.0	7.8	0.0	13.7	10.3						
Lane LOS	A		А		В	В						
Approach Delay (s)	1.3		0.3		13.7	10.3						
Approach LOS					В	В						
Intersection Summary												
Average Delay			2.4									
ntersection Capacity Utiliza	ation		33.6%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 2028 Total PM 3: Concession Road 7 & Elgin Park Drive 4 ۶ 1 t \mathbf{i} ŧ EBL NBT SBT SBR Movement EBR NBL Lane Configurations Þ 7 4 Traffic Volume (veh/h) 194 42 108 80 147 81 Future Volume (Veh/h) 194 81 42 108 80 147 Sign Control Stop Free Free Grade 0% 0% 0% Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 Hourly flow rate (vph) Pedestrians 204 85 44 114 84 155 Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (m) pX, platoon unblocked None None px, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) 162 239 364 364 162 6.2 239 6.4

4.1

3.5	3.3	2.2			
67	90	97			
617	889	1322			
EB 1	EB 2	NB 1	NB 2	SB 1	
204	85	44	114	239	
204	0	44	0	0	
0	85	0	0	155	
617	889	1322	1700	1700	
0.33	0.10	0.03	0.07	0.14	
11.0	2.4	0.8	0.0	0.0	
13.7	9.5	7.8	0.0	0.0	
В	А	А			
12.5		2.2		0.0	
В					
		5.7			
on		37.3%	IC	U Level of Service	e A
		15			
	67 617 EB 1 204 204 0 617 0.33 11.0 13.7 B 12.5 B	67 90 617 889 EB 1 EB 2 204 85 204 0 0 85 617 889 0.33 0.10 11.0 2.4 13.7 9.5 B A 12.5 B	67 90 97 617 889 1322 EB 1 EB 2 NB 1 204 85 44 204 85 0 617 889 1322 0.33 0.10 0.03 11.0 2.4 0.8 13.7 9.5 7.8 B A A 12.5 2.2 B 5.7 point 37.3%	67 90 97 617 889 1322 EB 1 EB 2 NB 1 NB 2 204 85 44 114 204 85 44 114 204 85 0 0 617 889 1322 1700 0.33 0.10 0.03 0.07 11.0 2.4 0.8 0.0 13.7 9.5 7.8 0.0 B A A 12.5 2.2 B 50 7.7 57 57 57 57 57 57	67 90 97 617 889 1322 EB 1 EB 2 NB 1 NB 2 SB 1 204 85 44 114 239 204 0 44 0 0 0 85 0 0 155 617 889 1322 1700 1700 0.33 0.10 0.03 0.07 0.14 11.0 2.4 0.8 0.0 0.0 13.7 9.5 7.8 0.0 0.0 B A A 12.5 2.2 0.0 B A A 12.5 2.2 0.0 B 3 A 3 3.7 3% ICU Level of Service


050985_ALL SCENARIOS.syn R.J Burnside & Associates


Synchro 11 Report 09/22/2022 - Page 3 050985_ALL SCENARIOS.syn R.J Burnside & Associates

Appendix E

Truck Access Analysis

Appendix F

Zoning By-law 81-19 Excerpts

5. GENERAL PROVISIONS

LOADING SPACE REQUIREMENT TABLES

(B/L No. 2008-063)	GROSS FLOOR AREA OF BUILDING INCLUDING AN EDUCATIONAL INSTITUTION BUILDING with the exception of buildings which are specifically built as office buildings, including a financial establishment, any apartment dwelling houses, nursing homes, homes for the aged, retirement homes or senior citizens' housing and institutional buildings, other then educational institution buildings	LOADING SPACE
	280 square metres or less	0 space
	Exceeding 280 square metres but not 2,300 square metres	1 spaces
	Exceeding 2,300 square metres but not 7,500 square metres	2 spaces
	Exceeding 7,500 square metres	3 spaces plus 1 additional space for each additional 9,200 square metres or fractional part thereof in excess of 7,500 square metres
(B/L No. 2008-063)	GROSS FLOOR AREA OF BUILDINGS WHICH ARE SPECIFICALLY BUILT AS OFFICE, FINANCIAL ESTABLISHMENT OR INSTITUTIONAL BUILDINGS, WITH THE EXCEPTION OF EDUCATIONAL INSTITUTION BUILDINGS	LOADING SPACE
	2,300 square metres or less	0 spaces
	Exceeding 2,300 metres, but not 11,600 square metres	1 space
	Exceeding 11,600 square metres	2 spaces
	APARTMENT DWELLING HOUSE, NURSING HOME, HOME FOR THE AGED, RETIREMENT HOME OR SENIOR CITIZEN HOUSING	0 spaces
	h ACCESS	

b. ACCESS

Access to loading or unloading spaces shall be by means of a driveway at least 6 metres in width contained on the lot on which the spaces are located and leading to an improved public road.

c. LOADING SPACE SURFACE

Driveways, loading and unloading spaces, and related aisles and turning areas shall be maintained with a stable surface which is treated so as to prevent the raising of dust. Such loading and unloading facilities shall, before being used, be constructed of crushed stone, gravel, asphalt, concrete or similar material and shall include provisions for drainage facilities.

GENERAL PROVISIONS

5.

PARKING SPACE REQUIREMENT TABLE

TYPE OR NATURE OF USE	MINIMUM OFF STREET PARKING REQUIREMENTS
Assembly Hall, Auditorium, Arena, Community Centre, Place of Entertainment, Place of Worship, Private Club or other similar places of assembly not otherwise specified herein.	1 parking space for each four persons that may be legally accommodated at any one time.
Bowling Alley	3 parking spaces for each bowling lane.
Business and/or Professional Office, Financial Establishment, Retail Commercial Establishment, Personal Service Shop including a Home Occupation.	1 parking space for each 20 square metres of gross floor area of the building directly related to the specified permitted use.
Curling Rink	4 parking spaces for each curling sheet plus such additional parking as is required for a lounge licensed in accordance with The Liquor Licence Act of Ontario.
Dry Cleaners Establishment	1 parking space for each 9 square metres or fraction thereof of gross floor area, with a minimum requirement of 4 parking spaces.
Eating Establishment, Tavern	1 parking space for each 9 square metres or fraction thereof of gross floor area, or 1 parking space for each 4 person or fraction thereof, legal capacity, whichever is greater.
Golf Course	24 parking spaces for each 9 holes of golfing facilities.
Home For the Aged, Nursing Home	1 parking space for each four beds or fraction thereof.
Hospital	1 parking space for each 2 beds or fraction thereof, or 38 square metres of gross floor area whichever is the greater.
Hotel, Motel	l parking space for each guest room, cottage or cabin plus such parking facilities as are required for an eating

Appendix G

Traffic By-law 2013-184 Excerpts

Section 7- Accessible Permit Only Parking Spaces

- 7.1 An accessible parking permit issued to an individual is not valid when displayed on a vehicle and the vehicle is not being used to pick up or transport the holder of the accessible parking permit.
- 7.2 An accessible parking permit issued to a corporation or organization is not valid when displayed on a vehicle and the vehicle is not being used to pick up or transport a person with a disability.
- 7.3 An accessible parking permit shall be displayed on the sun visor or on the dashboard of a vehicle so that the international symbol of access for the disabled, the permit number and the expiry date of the permit are clearly visible from the outside of the vehicle.
- 7.4 Every owner and operator of a parking lot shall provide a minimum number of designated parking spaces therein in accordance with the following table: Total Number of Designated Minimum Number of Designated **Parking Spaces** Parking Spaces 1 - 50 1 51 - 100 2 101 - 150 3 151 - 200 4 201 - 400 5 401 - 800 8 Over 800 8 plus 1 for each additional 200 parking spaces in parking lot
- 7.5 For the purpose of calculating the required minimum number of designated parking spaces for multi-unit residential developments consisting of 10 or more dwelling units, the requirements of subsection 6.4 shall be applied only to the visitor parking provided for the development.
- 7.6 Section 6.5 shall not apply to residential developments consisting of less than 10 dwelling units.
- 7.7 Each designated parking space shall be,
 - a) level with a maximum of 1.5% running slope for drainage;
 - b) a minimum width of four metres;
 - c) a minimum length of 5.3 metres;
 - d) a minimum vertical clearance of 2.75 metres;
 - e) located so sidewalks, paths or walkways will be accessible to disabled persons whether via ramps, aisles, depressed curbs, or other appropriate means without requiring a person to pass behind parked cars or cross a traffic lane;
 - f) located with sufficient clearance around the vehicle in terms of other vehicles or obstacles such as light standards and waste receptacles to permit free access by a wheelchair;
 - g) identified by the official sign be mounted with the base of the sign no less than 1.7 metres and no more than 2.0 metres above grade; and
 - h) located in a place approved by the Township of Uxbridge.

R.J. Burnside & Associates Limited